Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 14 trang 40 SBT Hình học 10 Nâng cao

Giải bài tập Bài 14 trang 40 SBT Hình học 10 Nâng cao

Tam giác \(ABC\) có \(AB=c, BC=a, AC=b.\)

a) Tính các tích vô hướng \(\overrightarrow {AB} .\overrightarrow {BC} \) và \(\overrightarrow {AB} .\overrightarrow {AC} \).

b) Tính độ dài trung tuyến \(AM\) của tam giác \(ABC.\)

Giải

a)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {BC} \\ = \dfrac{1}{2}(|\overrightarrow {AB}  + \overrightarrow {BC} {|^2} - {\overrightarrow {AB} ^2} - {\overrightarrow {BC} ^2})\\= \dfrac{1}{2}({\overrightarrow {AC} ^2} - {\overrightarrow {AB} ^2} - {\overrightarrow {BC} ^2})\\ = \dfrac{1}{2}({b^2} - {c^2} - {a^2}).\\\overrightarrow {AB} .\overrightarrow {AC}\\  = \dfrac{1}{2}[{\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} - {(\overrightarrow {AB}  - \overrightarrow {AC} )^2}]\\= \dfrac{1}{2}({\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} - {\overrightarrow {CB} ^2})\\ = \dfrac{1}{2}({c^2} + {b^2} - {a^2}).\end{array}\)

b) Vì \(AM\) là đường trung tuyến của tam giác \(ABC\) nên :

\(\begin{array}{l}A{M^2} = {\overrightarrow {AM} ^2} = \dfrac{1}{4}{(\overrightarrow {AB}  + \overrightarrow {AC} )^2}\\ = \dfrac{1}{4}({\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + 2\overrightarrow {AB} .\overrightarrow {AC} )\\= \dfrac{1}{4}({c^2} + {b^2} + {c^2} + {b^2} - {a^2})\\ = \dfrac{1}{4}(2{b^2} + 2{c^2} - {a^2}).\end{array}\)

Vậy \(AM = \dfrac{1}{2}\sqrt {2{b^2} + 2{c^2} - {a^2}} .\)

Sachbaitap.com