Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.40 trang 34 Sách bài tập (SBT) Giải tích 12

Biện luận theo k số nghiệm của phương trình:

Biện luận theo k số nghiệm của phương trình:

a) \({(x - 1)^2} = 2|x - k|\)                                                             

 b) \({(x + 1)^2}(2 - x) = k\)

Hướng dẫn làm bài:

a) Phương trình đã cho tương đương với phương trình:

\(2(x - k) =  \pm {(x - 1)^2}\)

\( \Leftrightarrow \left[ {\matrix{{ - {x^2} + 4x - 1 = 2k} \cr {{x^2} + 1 = 2k} \cr} } \right.\)

Ta vẽ đồ thị của hai hàm số: \(y =  - {x^2} + 4x - 1\)  và  \(y = {x^2} + 1\) 

 

Từ đồ thị ta suy ra:

2k > 3 : phương trình có hai nghiệm;

2k = 3 : phương trình có ba nghiệm;

2 < 2k < 3 : phương trình có bốn nghiệm;

2k = 2 : phương trình có ba nghiệm;

1 < 2k < 2 : phương trình có bốn nghiệm ;

2k = 1 : phương trình có ba nghiệm ;

2k < 1 : phương trình có hai nghiệm.

\(\Leftrightarrow \left[ {\matrix{
{1 < k < {3 \over 2},{\rm{or}}{1 \over 2} < k < 1(1)} \cr
{k = 1,\,\,{\rm{hoặc }}\,\,\,k = {1 \over 2},\,\,{\rm{hoặc }}\,\,\,k = {3 \over 2}(2)} \cr
{k > {3 \over 2},\,\,{\rm{hoặc }}\,\,\,k < {1 \over 2}(3)} \cr} } \right.\)

(1) : phương trình có bốn nghiệm;

(2): phương trình có ba nghiệm ;

(3): phương trình có hai nghiệm.

b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = {(x + 1)^2}(2 - x)\) .

\(y =  - {x^3} + 3x + 2 \Rightarrow  y' =  - 3{x^2} + 3\)

\(y' = 0 \Leftrightarrow  \left[ {\matrix{
{x = 1} \cr
{x = - 1} \cr} } \right.\)

Bảng biến thiên:

 

Đồ thị:

 

Từ đồ thị hàm số ta suy ra:

* k > 4  hoặc k < 0: phương trình có một nghiệm;

* k  = 4 hoặc k = 0 : phương trình có hai nghiệm;

* 0 < k < 4: phương trình có ba nghiệm.

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.