Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.42 trang 35 Sách bài tập (SBT) Giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1)

Cho hàm số   \(y = 2{x^4} - 4{x^2}\)                 (1)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).

b) Với giá trị nào của m, phương trình \({x^2}|{x^2} - 2| = m\) có đúng 6 nghiệm thực phân biệt?

(Đề thi đại học năm 2009; khối B)

Hướng dẫn làm bài:

a) Tập xác định : D = R

\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = 0 \hfill \cr
x = 1 \hfill \cr} \right.\)                

Hàm số đồng biến trên mỗi khoảng (-1; 0) và \((1; + \infty )\)

Hàm số nghịch biến trên mỗi khoảng \(( - \infty ; - 1);(0;1)\)

Hàm số đạt cực đại tại  x = 0; y = 0

Hàm số đạt cực tiểu tại \(x =  \pm 1;{y_{CT}} =  - 2\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \)                    

 \(y'' = 24{x^2} - 8;y'' = 0 \Leftrightarrow  {x^2} = {1 \over 3} \Leftrightarrow  x =  \pm {{\sqrt 3 } \over 3}\)

Đồ thị có hai điểm uốn: \({I_1}( - {{\sqrt 3 } \over 3}; - {{10} \over 9});\,\,{I_2}({{\sqrt 3 } \over 3}; - {{10} \over 9})\)

Bảng biến thiên:

   

Đồ thị:

 

Đồ thị cắt trục hoành tại: 

b) Ta có: \({x^2}|{x^2} - 2| = m\)

\(\eqalign{
& \Leftrightarrow 2{x^2}|{x^2} - 2| = 2m \cr
& \Leftrightarrow |2{x^2}({x^2} - 2)| = 2m \cr
& \Leftrightarrow |2{x^4} - 4{x^2}| = 2m \cr} \)

Từ đồ thị hàm số y = 2x4 – 4x2 có thể suy ra đồ thị của hàm số \(y = |2{x^4} - 4{x^2}|\) như sau:

 

Phương trình : \(|2{x^4} - 4{x^2}| = 2m\)  có 6 nghiệm phân biệt khi và chỉ khi đường  thẳng y = 2m có 6 nghiệm phân biệt với đồ thị (H)

\(⇔ 0 < 2m < 2\)

\(⇔ 0 < m < 1\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.