Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.50 trang 41 Sách bài tập (SBT) Hình học 11

Cho hai đường tròn có cùng bán kính R cắt nhau tại hai điểm M, N.

Cho hai đường tròn có cùng bán kính R cắt nhau tại hai điểm M, N. Đường trung trực của MN cắt hai đường tròn tại hai điểm A, Bvà nằm cùng phía đối với MN. Chứng minh rằng \(M{N^2} + A{B^2} = 4{R^2}\).

Giải:

\({T_{\overrightarrow {{O_2}{O_1}} }}:B \mapsto A\) 

\(M \mapsto E\) 

\( \Rightarrow \overrightarrow {BA}  = \overrightarrow {ME}  = \overrightarrow {{O_2}{O_1}} \) 

∆NME vuông tại M (vì \(ME\parallel AB\) và \(AB \bot MN\)), do đó NE là đường kính. Từ đó ta có:

\(\eqalign{
& N{E^2} = N{M^2} + M{E^2} \cr
& \Leftrightarrow {\left( {2{\rm{R}}} \right)^2} = M{N^2} + A{B^2} \cr
& \Leftrightarrow M{N^2} + A{B^2} = 4{{\rm{R}}^2} \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: Đề toán tổng hợp Chương I