Bài 1.7 trang 154 Sách bài tập (SBT) Đại số và giải tích 11Cho hai dãy số (un) và (vn). Cho hai dãy số (un) và (vn). Chứng minh rằng nếu \(\lim {v_n} = 0\) và \(\left| {{u_n}} \right| \le {v_n}\) với mọi n thì \(\lim {u_n} = 0\) Giải : \(\lim {v_n} = 0 \Rightarrow \left| {{v_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1) Vì \(\left| {{u_n}} \right| \le {v_n}\) và \({v_n} \le \left| {{v_n}} \right|\) với mọi n, nên \(\left| {{u_n}} \right| \le \left| {{v_n}} \right|\) với mọi n. (2) Từ (1) và (2) suy ra \(\left| {{u_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim {u_n} = 0\)
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 1. Giới hạn của dãy số
|
Có kết luận gì về giới hạn của dãy số (un)
Tính giới hạn của các dãy số có số hạng tổng quát như sau :
Cho dãy số (un) xác định bởi công thức truy hồi