Bài 2 trang 106 Sách bài tập (SBT) Toán Đại số 10Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng: \({x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\) Gợi ý làm bài \({x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\) \( \Leftrightarrow {x^2} - 2x + 4{y^2} - 12y + 3({z^2} - 2z) + 14 > 0\) \( \Leftrightarrow {(x - 1)^2}{(2y - 3)^2} + 3{(z - 1)^2} + 1 > 0\) (đúng) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1: Bất đẳng thức
|
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng