Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

\({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)

Gợi ý làm bài

Từ \({1 \over a} + {1 \over b} \ge 2\sqrt {{1 \over {ab}}} \) và \(a + b \ge 2\sqrt {ab} \) suy ra

\((a + b)({1 \over a} + {1 \over b}) \ge 4\) hay \({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)

Sachbaitap.net

 

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 1: Bất đẳng thức