Bài 22 trang 41 SBT Hình học 10 Nâng caoGiải bài tập Bài 22 trang 41 SBT Hình học 10 Nâng cao Tứ giác \(ABCD\) có hai đường chéo \(AC\) và \(BD\) vuông góc với nhau tại \(M\). Gọi \(P\) là trung điểm đoạn thẳng \(AD\). Chứng minh rằng : \(MP \bot BC\) khi và chỉ khi \(\overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MB} .\overrightarrow {MD} .\) Giải (h.32).
\(\begin{array}{l}2\overrightarrow {MP} .\overrightarrow {BC} = (\overrightarrow {MA} + \overrightarrow {MD} ).(\overrightarrow {MC} - \overrightarrow {MB} )\\= \overrightarrow {MA} .\overrightarrow {MC} - \overrightarrow {MD} .\overrightarrow {MB} + \overrightarrow {MD} .\overrightarrow {MC} - \overrightarrow {MA} .\overrightarrow {MB} \\= \overrightarrow {MA} .\overrightarrow {MC} - \overrightarrow {MB} .\overrightarrow {MD} \end{array}\) ( Do \(AC \bot BD\) nên \(\overrightarrow {MA} .\overrightarrow {MB} = \overrightarrow {MD} .\overrightarrow {MC} = 0\)). Từ đó ta có \(\begin{array}{l}MP \bot BC \Leftrightarrow \overrightarrow {MP} .\overrightarrow {BC} = 0\\\Leftrightarrow \overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MB} .\overrightarrow {MD} .\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài 2. Tích vô hướng của hai vec tơ
|