Bài 2.24 trang 80 Sách bài tập (SBT) Hình học 11Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh a) \(\left( {A{\rm{D}}F} \right)\parallel \left( {BCE} \right)\). b) \(M'N'\parallel DF\). c) \(\left( {DEF} \right)\parallel \left( {MM'N'N} \right)\) và \(MN\parallel \left( {DEF} \right)\). Giải: a) \(\left\{ \matrix{ \(\left\{ \matrix{ Mà \(AD,AF \subset \left( {ADF} \right)\) Nên \(\left( {ADF} \right)\parallel \left( {BCE} \right)\) b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có: \(MM'\parallel C{\rm{D}} \Rightarrow {{AM'} \over {A{\rm{D}}}} = {{AM} \over {AC}}\,\,\,\,\,\,\,\left( 1 \right)\) \(NN'\parallel AB \Rightarrow {{AN'} \over {AF}} = {{BN} \over {BF}}\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\) So sánh (1) và (2) ta được \({{AM'} \over {A{\rm{D}}}} = {{AN'} \over {AF}} \Rightarrow M'N'\parallel DF\) c) Từ chứng minh trên suy ra \(DF\parallel \left( {MM'N'N} \right)\) \(\left. \matrix{ Mà \(DF,EF \subset \left( {DEF} \right)\) nên \(\left( {DEF} \right)\parallel \left( {MM'N'N} \right)\) Vì \(MN \subset \left( {MM'N'N} \right)\) và \(\left( {MM'N'N} \right)\parallel \left( {DEF} \right)\) nên \(MN\parallel \left( {DEF} \right)\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Hai mặt phẳng song song
|
Cho hình lăng trụ tam giác ABCA’B’C’ có các cạnh bên là AA’, BB’, CC’. Gọi I và I’tương ứng là trung điểm của hai cạnh BC và B’C’.
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trung điểm của A’B’.
Cho hai hình bình hành ABCD và ABEF không nằm cùng trong một mặt phẳng. Gọi M và N là hai điểm di động tương ứng trên AD và BE sao cho
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều.