Bài 2.6 trang 163 Sách bài tập (SBT) Đại số và giải tích 11Tính các giới hạn sau : Tính các giới hạn sau : a) \(\mathop {\lim }\limits_{x \to - 3} {{x + 3} \over {{x^2} + 2x - 3}}\) ; b) \(\mathop {\lim }\limits_{x \to 0} {{{{\left( {1 + x} \right)}^3} - 1} \over x}\) ; c) \(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {{x^2} - 1}}\) ; d) \(\mathop {\lim }\limits_{x \to 5} {{x - 5} \over {\sqrt x - \sqrt 5 }}\) ; e) \(\mathop {\lim }\limits_{x \to + \infty } = {{x - 5} \over {\sqrt x + \sqrt 5 }}\) ; f) \(\mathop {\lim }\limits_{x \to - 2} {{\sqrt {{x^2} + 5} - 3} \over {x + 2}}\) ; g) \(\mathop {\lim }\limits_{x \to 1} {{\sqrt x - 1} \over {\sqrt {x + 3} - 2}}\) ; h) \(\mathop {\lim }\limits_{x \to + \infty } {{1 - 2x + 3{x^3}} \over {{x^3} - 9}}\) ; i) \(\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\left( {{1 \over {{x^2} + 1}} - 1} \right)\) ; j) \(\mathop {\lim }\limits_{x \to - \infty } {{\left( {{x^2} - 1} \right){{\left( {1 - 2x} \right)}^5}} \over {{x^7} + x + 3}}\) ; Giải: a) \(\mathop {\lim }\limits_{x \to - 3} {{x + 3} \over {{x^2} + 2x - 3}} = \mathop {\lim }\limits_{x \to - 3} {{x + 3} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} = \mathop {\lim }\limits_{x \to - 3} {1 \over {x - 1}} = {{ - 1} \over 4}\) b) \(\eqalign{ c) \(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {{x^2} - 1}} = \mathop {\lim }\limits_{x \to + \infty } {{{1 \over x} - {1 \over {{x^2}}}} \over {1 - {1 \over {{x^2}}}}} = 0\) d) \(\mathop {\lim }\limits_{x \to 5} {{x - 5} \over {\sqrt x - \sqrt 5 }}\) \(= \mathop {\lim }\limits_{x \to 5} {{\left( {\sqrt x - \sqrt 5 } \right)\left( {\sqrt x + \sqrt 5 } \right)} \over {\sqrt x - \sqrt 5 }}\) \(= \mathop {\lim }\limits_{x \to 5} \left( {\sqrt x + \sqrt 5 } \right) = 2\sqrt 5 \) e) \(\eqalign{ (Vì \({1 \over {\sqrt x }} + {{\sqrt 5 } \over x} > 0\) với mọi \(x > 0\) ). f) \(\eqalign{ g) \(\eqalign{ h) \(\mathop {\lim }\limits_{x \to + \infty } {{1 - 2x + 3{x^3}} \over {{x^3} - 9}} = \mathop {\lim }\limits_{x \to + \infty } {{{1 \over {{x^3}}} - {2 \over {{x^2}}} + 3} \over {1 - {9 \over {{x^3}}}}} = 3\) i) \(\eqalign{ j) \(\eqalign{
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Giới hạn của hàm số
|
Với giá trị nào của tham số m thì hàm số f(x) có giới hạn