Bài 2.35 trang 125 Sách bài tập (SBT) Giải tích 12Giải các phương trình logarit : Giải các phương trình logarit : a) \({\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\) b) \({x^{\log 9}} + {9^{\log x}} = 6\) c) \({x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\) d) \(1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\) Hướng dẫn làm bài: a) \({\log _2}({2^x} + 1).{\log _2}{\rm{[}}2({2^x} + 1){\rm{]}} = 2\) \( \Leftrightarrow {\log _2}({2^x} + 1).{\rm{[}}1 + {\log _2}({2^x} + 1){\rm{]}} = 2\) Đặt \(t = {\log _2}({2^x} + 1)\) , ta có phương trình \(t(1 + t) = 2 ⇔ {t^2} + t – 2 = 0\) \(\eqalign{& \Leftrightarrow \left[ {\matrix{{t = 1} \cr {t = - 2} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{{\log }_2}({2^x} + 1) = 1} \cr {{{\log }_2}({2^x} + 1) = - 2} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{{2^x} + 1 = 2} \cr {{2^x} + 1 = {1 \over 4}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{2^x} = 1} \cr {{2^x} = - {3 \over 4}(l)} \cr} } \right. \Leftrightarrow x = 0 \cr} \) b) Với điều kiện x > 0, ta có: \(\log ({x^{\log 9}}) = \log ({9^{\log x}})\) \(\log ({x^{\log 9}}) = \log 9.\log x\) và \(\log ({9^{\log x}}) = \log x.\log 9\) Nên \(\log ({x^{\log 9}}) = \log ({9^{\log x}})\) Suy ra: \({t^4} + 14{t^2} - 32t + 17 = 0\) \( \Leftrightarrow {(t - 1)^2}({t^2} + 2t + 17) = 0 \Leftrightarrow t = 1\) \({x^{\log 9}} = {9^{\log x}}\) Đặt \(t = {x^{\log 9}}\) , ta được phương trình \(2t = 6 ⇔ t = 3 ⇔ {x^{\log 9}} = 3\) \(\eqalign{ \(\Leftrightarrow x = \sqrt {10} \) (thỏa mãn điều kiện x > 0) c) Với điều kiện x > 0, lấy logarit thập phân hai vế của phương trình đã cho, ta được: \((3{\log ^3}x - \frac{2}{3}\log x).\log x = \frac{7}{3}\) Đặt \(t = \log x\) , ta được phương trình \(3{t^4} - \frac{2}{3}{t^2} - \frac{7}{3} = 0\) \(\eqalign{ d) Đặt \(t = {\log _5}(x + 2)\) với điều kiện \(x + 2{\rm{ }} > 0,\,\,x + 2 \ne 1\) , ta có: \(\eqalign{& 1 + {2 \over t} = t \Leftrightarrow {t^2} - t - 2 = 0,t \ne 0 \cr & \Leftrightarrow \left[ {\matrix{{t = - 1} \cr {t = 2} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{{\log }_5}(x + 2) = - 1} \cr {{{\log }_5}(x + 2) = 2} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x + 2 = {1 \over 5}} \cr {x + 2 = 25} \cr} \Leftrightarrow \left[ {\matrix{{x = - {9 \over 5}} \cr {x = 23} \cr} } \right.} \right. \cr} \) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 5. Phương trình mũ và phương trình logarit
|