Bài 24 trang 9 Sách bài tập Hình học lớp 12 Nâng caoĐáy của khối lăng trụ đứng Đáy của khối lăng trụ đứng ABC.A1B1C1 là tam giác đều. Mặt phẳng (A1BC) tạo với đáy một góc 300 và tam giác A1BC có diện tích bằng 8. Tính thể tích khối lăng trụ. Giải (h.7) Giả sử CK = x, ở đây AK là đường cao của tam giác đều ABC. Từ định lí ba đường vuông góc, ta có \({A_1}K \bot BC.\) Từ đó góc AKA1 = 300. Xét tam giác vuông A1AK, ta có: \({A_1}K = AK;\cos {30^0} = {{2AK} \over {\sqrt 3 }},\)mà \(AK = {{2x\sqrt 3 } \over 2} = x\sqrt 3 \)nên \({A_1}K = 2x\) \({A_1}A = AK\tan {30^0} = x\sqrt 3 .{{\sqrt 3 } \over 3} = x.\) Vậy \({V_{ABC.{A_1}{B_1}{C_1}}} = CK.AK.{\rm{A}}{{\rm{A}}_1} = {x^3}\sqrt 3 .\) Nhưng \({S_{{A_1}BC}} = CK.{A_1}K = 8\) nên \(x.2x=8 \Rightarrow x = 2\), Vậy \({V_{ABC.{A_1}{B_1}{C_1}}} = 8\sqrt 3 \). Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Thể tích của khối đa diện
|