Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 25 trang 9 Sách bài tập Hình học lớp 12 Nâng cao

Cho khối lăng trụ đứng

Cho khối lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy hình bình hành và góc \(BAD = {45^0}\). Các đường chéo AC1DB1 lần lượt tạo với đáy những góc 450600. Hãy tính thể tích của khối lăng trụ nếu biết chiều cao của nó bằng 2.

Giải

(h.8)

Hình lăng trụ đã cho là hình lăng trụ đứng nên các cạnh bên vuông góc với đáy và độ dài cạnh bên bằng chiều cao của hình lăng trụ. Từ giả thiết ta suy ra :

Góc \({C_1}AC = {45^0}\),góc \({B_1}DB = {60^0}\).

Từ đó suy ra

\(AC = C{C_1} = 2,BD = 2\cot {60^0} = {2 \over {\sqrt 3 }}.\)

Áp dụng định lý hàm số côsin ta có :

\(\eqalign{  & B{D^2} = A{B^2} + A{D^2} - 2AB.AD.\cos {45^0},  \cr  & A{C^2} = D{C^2} + A{D^2} - 2DC.AD.\cos {135^0}, \cr} \)

Từ đó ta có:

\(\eqalign{  & B{D^2} - A{C^2} =  - AB.AD.\sqrt 2  + DC.AD.\left( { - \sqrt 2 } \right)\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =  - 2\sqrt 2 AB.AD  \cr  &  \Rightarrow {4 \over 3} - 4 =  - 2\sqrt 2 AB.AD \cr&\Rightarrow AB.AD = {8 \over {3.2\sqrt 2 }} = {4 \over {3\sqrt 2 }}.  \cr  & {V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = AB.AD.\sin {45^0}{\rm{.A}}{{\rm{A}}_1} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;= {4 \over {3\sqrt 2 }}.{{\sqrt 2 } \over 2}.2 = {4 \over 3}. \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.