Bài 2.42 trang 85 Sách bài tập (SBT) Hình học 11a) Chứng minh rằng hai đường chéo AC’ và A’C cắt nhau và hai đường chéo BD’ và B’Dcắt nhau. Cho hình lăng trụ tứ giác ABCD.A’B’C’D’. a) Chứng minh rằng hai đường chéo AC’ và A’C cắt nhau và hai đường chéo BD’ và B’Dcắt nhau. b) Cho E và F lần lượt là trung điểm của hai đường chéo AC và BD.Chứng minh MN = EF. Giải:
Hình bình hành ACC’A có hai đường chéo là AC’ và A’C cắt nhau tại trung điểm Mcủa mỗi đường. Tương tự, hai đường chéo BD’ và B’D cắt nhau tại trung điểm N của mỗi đường. b) Trung điểm E của AC là hình chiếu của trung điểm M của AC’ thep phương của cạnh lăng trụ. Tương tự, trung điểm F là hình chiếu trung điểm N của đường chéo BD’ trên BD. Ta có \(EM\parallel CC'\) và \(EM = {{CC'} \over 2}\) Mặt khác \(FN\parallel DD'\) và \(FN = {{DD'} \over 2}\). Từ đó suy ra tứ giác MNFE là hình bình hành và ta có MN = EF. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả. |
b) Giả sử đường thẳng M1M2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.
Cho hình lập phương ABCD.A’B’C’D’ các trung điểm E, F của các cạnh AB, DD’. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC’) và (EFK) với K là trung điểm của cạnh B’C’.
Cho hình chóp S.ABCD có đáy là hình thang ( đáy lớn AD). Gọi O la giao điểm của ACvà BD, I và J lần lượt là trung điểm của SB và SC.
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C’ là trung điểm của SC và M là một điểm di động trên cạnh SA. Mặt phẳng (P) di động luôn đi qua C’M và song song với BC.