Bài 25 trang 77 Sách bài tập (SBT) Toán Đại số 10Giải và biện luận các phương trình sau theo tham số m. Giải và biện luận các phương trình sau theo tham số m. a) \(|2x - 5m| = 2x - 3m\) b) \(|3x + 4m| = |4x - 7m|\) c) $\((m + 1){x^2} + (2m - 3)x + m + 2 = 0\) d) \({{{x^2} - (m + 1)x - {{21} \over 4}} \over {x - 3}} = 2x + m\) Gợi ý làm bài a) Với \(x \ge {{5m} \over 2}\) phương trình đã cho trở thành \(2x - 5m = 2x - 3m \Leftrightarrow 2m = 0 \Leftrightarrow m = 0\) Vậy với m = 0 thì mọi \(x \ge 0\) đều là nghiệm của phương trình. Với \(x < {{5m} \over 2}\) phương trình đã cho trở thành \( - 2x + 5m = 2x - 3m\) \( \Leftrightarrow 4x = 8m \Leftrightarrow x = 2m\) Vì $\(x < {{5m} \over 2}\) nên \(2m < {{5m} \over 2} \Leftrightarrow m > 0\). Kết luận: Với m > 0 phương trình có nghiệm là x = 2m. Với m = 0 phương trình có nghiệm là mọi số thực không âm. Với m < 0 phương trình vô nghiệm. b) Ta có: \(\eqalign{ Vậy phương trình đã cho có hai nghiệm x = 11m và $\(x = {{3m} \over 7}\) với mọi giá trị của m. c) Với m = -1 phương trình đã cho trở thành \( - 5x + 1 = 0 \Leftrightarrow x = {1 \over 5}$\) Với \(m \ne - 1\) phương trình đã cho là một phương trình bậc hai, có biệt thức \(\Delta = - 24m + 1.\) Nếu \(m \le {1 \over {24}}\) thì \(\Delta \ge 0\) phương trình có hai nghiệm \({x_{1,2}} = {{2m - 3 \pm \sqrt {1 - 24m} } \over {2(m + 1)}}\) Kết luận: Với \(x > {1 \over {24}}\) phương trình vô nghiệm. Với \(x \le {1 \over {24}}\) và \(m \ne - 1\) phương trình có hai nghiệm. \({x_{1,2}} = {{2m - 3 \pm \sqrt {1 - 24m} } \over {2(m + 1)}}\) Với m = -1 phương trình có nghiệm là \(x = {1 \over 5}\) d) Điều kiện của phương trình là: \(x \ne 3.\) Ta có: \({{{x^2} - (m + 1)x - {{21} \over 4}} \over {x - 3}} = 2x + m = > {x^2} - (m + 1)x - {{21} \over 4} = (x - 3)(2x + m)\) \( \Leftrightarrow {x^2} + (2m - 5)x + {{21} \over 4} - 3m = 0\) Phương trình cuối luôn có nghiệm \({x_1} = {3 \over 2},{x_2} = {{7 - 4m} \over 2}\) Ta có: \({{7 - 4m} \over 2} \ne 3 \Leftrightarrow m \ne {1 \over 4}\) Kết luận Với \(m \ne {1 \over 4}\) phương trình đã cho có hai nghiệm và \(x = {3 \over 2}\) và \(x = {{7 - 4m} \over 2}\) Với \(m = {1 \over 4}\) phương trình có một nghiệm \(x = {3 \over 2}\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài tập Ôn tập chương III - Phương trình. Hệ phương trình - SBT Toán 10
|
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm