Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 29 trang 9 Sách bài tập Hình học lớp 12 Nâng cao

Cho khối lăng trụ

Cho khối lăng trụ ABC.A1B1C1 có đáy ABC là tam giác vuông cân với cạnh huyền AB bằng \(\sqrt 2 \). Cho biết mặt phẳng \(\left( {A{A_1}B} \right)\) vuông góc với mặt phẳng \(\left( {ABC} \right)\),\({\rm{A}}{{\rm{A}}_1} = \sqrt 3 \), góc \(\widehat {{A_1}AB}\) nhọn , góc giữa mặt phẳng \(\left( {{A_1}AC} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng 600.

Hãy tính thể tích khối lăng trụ.

Giải

(h.12)

Hạ \({A_1}K \bot AB\) ( với \(K \in AB)\) thì \({A_1}K \bot \left( {ABC} \right)\). Vì \(\widehat {{A_1}AB}\) nhọn nên K thuộc tia AB.

Kẻ \(KM \bot AC\) thì \({A_1}M \bot AC\) (định lí ba đường vuông góc ), do đó \(\widehat {{A_1}MK}\) = 600,

Giả sử \({A_1}K = x\), ta có :

\(\eqalign{  & AK = \sqrt {{A_1}{A^2} - {A_1}{K^2}}  = \sqrt {3 - {x^2}} ,  \cr  &  \cr} \)

\(MK = AK.\sin \widehat {KAM}\)

          \(=\sqrt {3 - {x^2}} .\sin {45^0} = {{\sqrt 2 } \over 2}\sqrt {3 - {x^2}} .\)

Mặt khác, \(MK = {A_1}K.\cot {60^0} = {x \over {\sqrt 3 }},\) suy ra

\( {{\sqrt{2.\left( {3 - {x^2}} \right)} \over {2}}}  = {x \over {\sqrt 3 }} \Rightarrow x = {3 \over {\sqrt 5 }}.\)

Vậy \({V_{ABC.{A_1}{B_1}{C_1}}} = {S_{ABC}}.{A_1}K \)

                              \(= {1 \over 2}AC.CB.{A_1}K = {{3\sqrt 5 } \over {10}}\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.