Bài 2.54 trang 87 Sách bài tập (SBT) Hình học 11Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gợi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC’, C’D’. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương. Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gợi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC’, C’D’. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương. Giải:
(h.2.80) Xác định thiết diện: Trong mặt phẳng (DD’C’C), gọi \({C_1} = PQ \cap C{\rm{D, }}{{\rm{D}}_1} = PQ \cap DD'\) Trong mặt phẳng (ABCD), gọi \(M = {C_1}N \cap AB,{A_1} = {C_1}N \cap A{\rm{D}}\) Trong mặt phẳng (DD’A’A), gọi \(R = {D_1}{A_1} \cap A'{\rm{D', S = }}{D_1}{A_1} \cap AA'\) Ta có thiết diện cần tìm là lục giác MNPQRS +Tính diện tích thiết diện : Các đỉnh của hình lục giác là trung điểm các cạnh của hình lập phương nên chúng bằng nhau và mỗi cạnh của lục giác bằng nửa đường chéo của hình vuông có cạnh bằng a. Ta có: \(MN = NP = PQ = Q{\rm{R}} = R{\rm{S}} = SM = {{a\sqrt 2 } \over 2}\) Ngoài ra \(\Delta {D_1}RQ = \Delta S{A_1}M = \Delta PN{C_1}\) ( chúng là những tam giác đều ) Suy ra: \(\widehat {SRQ} = \widehat {RQP} = \widehat {QPN} = \widehat {PNM} = \widehat {NMS} = \widehat {MSR} = {120^0}\) Khi đó , ta có lục giác MNPQRS là lục giác đều. \({S_{MNPQRS}} = {S_{{A_1}{C_1}{D_1}}} - 3{S_{{D_1}RQ}} = {{3{a^2}\sqrt 3 } \over 4}\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
II. Đề toán tổng hợp
|
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD.
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B’, C’, D’