Bài 29 trang 10 SBT Hình học 10 Nâng caoGiải bài tập Bài 29 trang 10 SBT Hình học 10 Nâng cao Cho tam giác \(ABC\) và trung tuyến \(AM\). Một đường thẳng song song với \(AB\) cắt các đoạn thẳng \(AM, AC, BC\) lần lượt tại \(D, E, F\). Một điểm \(G\) nằm trên cạnh \(AB\) sao cho \(FG//AC\). Chứng minh rằng hai tam giác \(ADE\) và \(BFG\) có diện tích bằng nhau. Giải
Ta đặt \(\overrightarrow {CA} = \overrightarrow a \,\,;\,\,\overrightarrow {CB} = \overrightarrow b \). \(\overrightarrow {CM} = \dfrac{{\overrightarrow b }}{2}\). Vì E nằm trên đoạn thẳng \(AC\) nên có số k sao cho \(\overrightarrow {CE} = k\overrightarrow {CA} = k\overrightarrow a \), với \(0<k<1\). Khi đó \(\overrightarrow {CF} = k\overrightarrow {CB} = k\overrightarrow b \). Điểm \(D\) nằm trên \(AM\) và \(EF\) nên có hai số \(x, y\) sao cho \(\overrightarrow {CD} = x\overrightarrow {CA} + (1 - x)\overrightarrow {CM}\) \( = y\overrightarrow {CE} + (1 - y)\overrightarrow {CF} \) hay \(x\overrightarrow a + \dfrac{{1 - x}}{2}\overrightarrow b = ky\overrightarrow a + k(1 - y)\overrightarrow b .\) Vì hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương nên \(x = ky\,,\,\,\dfrac{{1 - x}}{2} = k(1 - y)\). Suy ra \(x=2k-1\), do đó \(\overrightarrow {CD} = (2k - 1)\overrightarrow a + (1 - k)\overrightarrow b \). Ta có \(\overrightarrow {ED} = \overrightarrow {CD} - \overrightarrow {CE}\) \(= (2k - 1)\overrightarrow a + (1 - k)\overrightarrow b - k\overrightarrow a\) \( = (1 - k)(\overrightarrow b - \overrightarrow a ) = (1 - k)\overrightarrow {AB} \) Chú ý rằng vì \(\overrightarrow {CF} = k\overrightarrow {CB} \) nên \(\overrightarrow {AG} = k\overrightarrow {AB} \) hay \(\overrightarrow {AB} + \overrightarrow {BG} = k\overrightarrow {AB} \), suy ra \((1 - k)\overrightarrow {AB} = \overrightarrow {GB} \). Do đó ED=GB. Như vậy hai tam giác ADE và BFG có các cạnh đáy ED và GB bằng nhau, chiều cao bằng nhau (bằng khoảng cách giữa hai đường thẳng song song) nên có diện tích bằng nhau. Sachbaitap.com
Xem thêm tại đây:
Bài 4. Tích của một vec tơ với một số.
|