Bài 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 trang 32, 33 SBT Toán 10 tập 1 Kết nối tri thứcGiải bài 5 trang 32, 33 SBT Toán lớp 10 tập 1 Kết nối tri thức với cuộc sống: Giá trị lượng giác của một góc từ 0 đến 180 độ. Bài 3.1: Tính giá trị của các biểu thức: Bài 3.1 trang 32 SBT Toán lớp 10 tập 1 - Kết nối tri thức Tính giá trị của các biểu thức: a) \(A = \sin {45^ \circ } + 2\sin {60^ \circ } + \tan {120^ \circ } + \cos {135^ \circ }.\) b) \(B = \tan {45^ \circ }.\cot {135^ \circ } - \sin {30^ \circ }.\cos {120^ \circ } - \sin {60^ \circ }.\cos {150^ \circ }.\) c) \(C = {\cos ^2}{5^ \circ } + {\cos ^2}{25^ \circ } + {\cos ^2}{45^ \circ } + {\cos ^2}{65^ \circ } + {\cos ^2}{85^ \circ }.\) \(\) d) \(D = \frac{{12}}{{1 + {{\tan }^2}{{73}^ \circ }}} - 4\tan {75^ \circ }.\cot {105^ \circ } + 12{\sin ^2}{107^ \circ } - 2\tan {40^ \circ }.\cos {60^ \circ }.\tan {50^ \circ }.\) e) \(E = 4\tan {32^ \circ }.\cos {60^ \circ }.\cot {148^ \circ } + \frac{{5{{\cot }^2}108}}{{1 + {{\tan }^2}{{18}^ \circ }}} + 5{\sin ^2}{72^ \circ }.\) Lời giải: a) \(A = \sin {45^ \circ } + 2\sin {60^ \circ } + \tan {120^ \circ } + \cos {135^ \circ }\) \(\begin{array}{l}A = \frac{{\sqrt 2 }}{2} + 2.\frac{{\sqrt 3 }}{2} + \left( { - \sqrt 3 } \right) + \left( {\frac{{ - \sqrt 2 }}{2}} \right)\\A = \frac{{\sqrt 2 }}{2} + \sqrt 3 + \left( { - \sqrt 3 } \right) + \left( {\frac{{ - \sqrt 2 }}{2}} \right)\\A = 0\end{array}\) b) \(B = \tan {45^ \circ }.\cot {135^ \circ } - \sin {30^ \circ }.\cos {120^ \circ } - \sin {60^ \circ }.\cos {150^ \circ }\) \(\begin{array}{l}B = 1.\left( { - 1} \right) - \frac{1}{2}.\left( {\frac{{ - 1}}{2}} \right) - \frac{{\sqrt 3 }}{2}.\left( {\frac{{ - \sqrt 3 }}{2}} \right)\\B = - 1 + \frac{1}{4} + \frac{3}{4} = 0\end{array}\) c) \(C = {\cos ^2}{5^ \circ } + {\cos ^2}{25^ \circ } + {\cos ^2}{45^ \circ } + {\cos ^2}{65^ \circ } + {\cos ^2}{85^ \circ }\) \(\begin{array}{l}C = {\cos ^2}\left( {{{90}^ \circ } - {{85}^ \circ }} \right) + {\cos ^2}\left( {{{90}^ \circ } - {{65}^ \circ }} \right) + {\cos ^2}{45^ \circ } + {\cos ^2}{65^ \circ } + {\cos ^2}{85^ \circ }\\C = {\sin ^2}{85^ \circ } + {\cos ^2}{85^ \circ } + {\sin ^2}{65^ \circ } + {\cos ^2}{85^ \circ } + {\sin ^2}{45^ \circ }\\C = 1 + 1 + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 2 + \frac{1}{2} = \frac{5}{2}\end{array}\) d) \(D = \frac{{12}}{{1 + {{\tan }^2}{{73}^ \circ }}} - 4\tan {75^ \circ }.\cot {105^ \circ } + 12{\sin ^2}{107^ \circ } - 2\tan {40^ \circ }.\cos {60^ \circ }.\tan {50^ \circ }\) \(\begin{array}{l}D = 12{\cos ^2}{73^ \circ } + 12{\sin ^2}\left( {{{180}^ \circ } - {{73}^ \circ }} \right) - 4\tan {75^ \circ }.\cot \left( {{{180}^ \circ } - {{75}^ \circ }} \right) - 2\tan {40^ \circ }.\tan \left( {{{90}^ \circ } - {{40}^ \circ }} \right)\cos {60^ \circ }\\D = 12{\cos ^2}{73^ \circ } + 12{\sin ^2}{73^ \circ } - 4\tan {75^ \circ }\left( { - \cot {{75}^ \circ }} \right) - 2\tan {40^ \circ }.\cot {40^ \circ }.\frac{1}{2}\\D = 12 + 4 - 1 = 15\end{array}\) e) \(E = 4\tan {32^ \circ }.\cos {60^ \circ }.\cot {148^ \circ } + \frac{{5{{\cot }^2}108}}{{1 + {{\tan }^2}{{18}^ \circ }}} + 5{\sin ^2}{72^ \circ }.\) \(\begin{array}{l}E = 4\tan {32^ \circ }.\cot \left( {{{180}^ \circ } - {{32}^ \circ }} \right).\cos {60^ \circ } + \frac{{5{{\cot }^2}\left( {{{180}^ \circ } - {{72}^ \circ }} \right)}}{{1 + {{\tan }^2}{{18}^ \circ }}} + 5{\sin ^2}\left( {{{90}^ \circ } - {{18}^ \circ }} \right)\\E = - 4\tan {32^ \circ }.\cot {32^ \circ }.\cos {60^ \circ } + 5{\cot ^2}{72^ \circ }.{\cos ^2}{18^ \circ } + 5{\cos ^2}{18^ \circ }\\E = - 4\cos {60^ \circ } + 5{\cot ^2}\left( {{{90}^ \circ } - {{18}^ \circ }} \right).{\cos ^2}{18^ \circ } + 5{\cos ^2}{18^ \circ }\\E = - 4\cos {60^ \circ } + 5{\tan ^2}{18^ \circ }.{\cos ^2}{18^ \circ } + 5{\cos ^2}{18^ \circ }\\E = - 4\cos {60^ \circ } + 5{\sin ^2}{18^ \circ } + 5{\cos ^2}{18^ \circ }\\E = - 4.\frac{1}{2} + 5 = - 2 + 5 = 3\end{array}\) Bài 3.2 trang 32 SBT Toán lớp 10 tập 1 - Kết nối tri thức Cho góc \(\alpha ,\,\,{90^ \circ } < \alpha < {180^ \circ }\) thỏa mãn \(\sin \alpha = \frac{3}{4}.\) Tính giá trị của biểu thức \(F = \frac{{\tan \alpha + 2\cot \alpha }}{{\tan \alpha + \cot \alpha }}.\) Lời giải: Vì \({90^ \circ } < \alpha < {180^ \circ }\)nên \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{9}{{16}}} = - \frac{{\sqrt 7 }}{4}.\) Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{3}{4}:\left( { - \frac{{\sqrt 7 }}{4}} \right) = \frac{{ - 3}}{{\sqrt 7 }}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{ - \sqrt 7 }}{4}:\frac{3}{4} = \frac{{ - \sqrt 7 }}{3}.\) \(F = \frac{{\tan \alpha + 2\cot \alpha }}{{\tan \alpha + \cot \alpha }} = \frac{{\frac{{ - 3}}{{\sqrt 7 }} + 2.\frac{{ - \sqrt 7 }}{3}}}{{\frac{{ - 3}}{{\sqrt 7 }} - \frac{{\sqrt 7 }}{3}}} = \frac{{\frac{{ - 23}}{{3\sqrt 7 }}}}{{\frac{{ - 16}}{{3\sqrt 7 }}}} = \frac{{23}}{{16}}.\) Bài 3.3 trang 33 SBT Toán lớp 10 tập 1 - Kết nối tri thức Cho góc \(\alpha \) thỏa mãn \({0^ \circ } < \alpha < {180^ \circ },\,\,\tan \alpha = 2.\) Tính giá trị của các biểu thức sau: a) \(G = 2\sin \alpha + \cos \alpha .\) b) \(H = \frac{{2\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}.\) Lời giải: Ta có: \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + 4}} = \frac{1}{5}\,\, \Rightarrow \cos \alpha = \frac{{\sqrt 5 }}{5}.\) \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - \frac{1}{5}} = \frac{{2\sqrt 5 }}{5}.\) a) \(G = 2\sin \alpha + \cos \alpha = 2.\frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{5\sqrt 5 }}{5} = \sqrt 5 .\) b) \(H = \frac{{2\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }} = \frac{{\sqrt 5 }}{{\frac{{2\sqrt 5 }}{5} - \frac{{\sqrt 5 }}{5}}} = \frac{{\sqrt 5 }}{{\frac{{\sqrt 5 }}{5}}} = 5.\) Bài 3.4 trang 33 SBT Toán lớp 10 tập 1 - Kết nối tri thức Cho góc \(\alpha \) thỏa mãn \({0^ \circ } < \alpha < {180^ \circ },\,\,\tan \alpha = \sqrt 2 .\) Tính giá trị của biểu thức \(K = \frac{{{{\sin }^3}\alpha + \sin \alpha .{{\cos }^2}\alpha + 2{{\sin }^2}\alpha .\cos \alpha - 4{{\cos }^3}\alpha }}{{\sin \alpha - \cos \alpha }}.\) Lời giải: Chia cả tử vào mẫu của biểu thức K cho \({\cos ^3}\alpha \) ta được: \(\begin{array}{l}K = \frac{{{{\sin }^3}\alpha + \sin \alpha .{{\cos }^2}\alpha + 2{{\sin }^2}\alpha .\cos \alpha - 4{{\cos }^3}\alpha }}{{\sin \alpha - \cos \alpha }}\\K = \frac{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{\sin \alpha .{{\cos }^2}\alpha }}{{{{\cos }^3}\alpha }} + \frac{{2{{\sin }^2}\alpha .\cos \alpha }}{{{{\cos }^3}\alpha }} - \frac{{4{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }}}}{{\frac{{\sin \alpha }}{{{{\cos }^3}\alpha }} - \frac{{\cos \alpha }}{{{{\cos }^3}\alpha }}}}\\K = \frac{{{{\tan }^3}\alpha + \tan \alpha + 2{{\tan }^2}\alpha - 4}}{{\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }} - \frac{1}{{{{\cos }^2}\alpha }}}}\\K = \frac{{{{\tan }^3}\alpha + \tan \alpha + 2{{\tan }^2}\alpha - 4}}{{\tan \alpha .\left( {1 + {{\tan }^2}\alpha } \right) - \left( {1 + {{\tan }^2}\alpha } \right)}}\\K = \frac{{{{\left( {\sqrt 2 } \right)}^3} + \sqrt 2 + 2{{\left( {\sqrt 2 } \right)}^2} - 4}}{{\sqrt 2 \left[ {1 + {{\left( {\sqrt 2 } \right)}^2}} \right] - \left[ {1 + {{\left( {\sqrt 2 } \right)}^2}} \right]}}\\K = \frac{{3\sqrt 2 }}{{3\left( {\sqrt 2 - 1} \right)}} = \frac{{\sqrt 2 }}{{\sqrt 2 - 1}} = \sqrt 2 \left( {\sqrt 2 + 1} \right).\end{array}\) Bài 3.5 trang 33 SBT Toán lớp 10 tập 1 - Kết nối tri thức Chứng minh rằng: a) \({\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2{\sin ^2}\alpha .{\cos ^2}\alpha .\) b) \({\sin ^6}\alpha + {\cos ^6}\alpha = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha .\) c) \(\sqrt {{{\sin }^4}\alpha + 6{{\cos }^2}\alpha + 3} + \sqrt {{{\cos }^4}\alpha + 4{{\sin }^2}\alpha } = 4.\) Lời giải: a) \({\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2{\sin ^2}\alpha .{\cos ^2}\alpha .\) \(\begin{array}{l}VT = {\left( {{{\sin }^2}\alpha } \right)^2} + {\left( {{{\cos }^2}\alpha } \right)^2}\\ = \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) - 2{\sin ^2}\alpha .{\cos ^2}\alpha = 1 - 2{\sin ^2}\alpha .{\cos ^2}\alpha = VP\end{array}\) b) \({\sin ^6}\alpha + {\cos ^6}\alpha = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha .\) \(\begin{array}{l}VT = {\left( {{{\sin }^2}\alpha } \right)^3} + {\left( {{{\cos }^2}\alpha } \right)^3}\\ = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^3} - 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right)\\ = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\\ = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha = VP\end{array}\) c) \(\sqrt {{{\sin }^4}\alpha + 6{{\cos }^2}\alpha + 3} + \sqrt {{{\cos }^4}\alpha + 4{{\sin }^2}\alpha } = 4.\) \(\begin{array}{l}VT = \sqrt {{{\left( {{{\sin }^2}\alpha } \right)}^2} + 6{{\cos }^2}\alpha + 3} + \sqrt {{{\left( {{{\cos }^2}\alpha } \right)}^2} + 4{{\sin }^2}\alpha } \\ = \sqrt {{{\left( {1 - {{\cos }^2}} \right)}^2} + 6{{\cos }^2}\alpha + 3} + \sqrt {{{\left( {1 - {{\sin }^2}\alpha } \right)}^2} + 4{{\sin }^2}\alpha } \\ = \sqrt {{{\cos }^4}\alpha + 4{{\cos }^2}\alpha + 4} + \sqrt {{{\sin }^4}\alpha + 2{{\sin }^2}\alpha + 1} \\ = \sqrt {{{\left( {{{\cos }^2}\alpha + 2} \right)}^2}} + \sqrt {{{\left( {{{\sin }^2}\alpha + 1} \right)}^2}} \\ = {\cos ^2}\alpha + 2 + {\sin ^2}\alpha + 1 = 4 = VP\end{array}\) Bài 3.6 trang 33 SBT Toán lớp 10 tập 1 - Kết nối tri thức Góc nghiêng của mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tai nắng lúc giữa trưa với mặt đất. Trong thực tế, để đo trực tiếp góc này, vào giữa trưa (khoang 12 giờ), em có thể dựng một thước thẳng vuông góc với mặt đất, đo độ dài của bóng thước trên mặt đất. Khi đó, tang của góc nghiêng Mặt Trời tại vị trí đặt thước bằng tỷ số giữa độ dài cửa thước và độ dài bóng thước. Góc nghiêng của Mặt Trời phụ thuộc vào vĩ độ của vị trí đo và phụ thuộc vào thời gian đo trong năm (ngày thứ mấy trong năm). Tại vị trí có vĩ độ \(\varphi \) và ngày thứ \(N\) trong năm, góc nghiêng của Mặt Trời \(\alpha \) còn được tính theo công thức sau: \(\alpha = {90^ \circ } - \varphi - \left| {\cos \left( {\left( {\frac{{2\left( {N + 10} \right)}}{{365}} - m} \right){{180}^ \circ }} \right)} \right|.23,{5^ \circ }\) Trong đó \(m = 0\) nếu \(1 \le N \le 172,\,\,m = 1\) nếu \(173 \le N \le 355,\,\,m = 2\) nếu \(356 \le N \le 365.\) a) Hãy áp dụng công thức trên để tính góc nghiêng của Mặt Trời vào ngày 10/10 trong năm không nhuận (năm mà tháng 2 có 28 ngày) tại vị trí có vĩ độ \(\varphi = {20^ \circ }.\) b) Hãy xác định vĩ độ tại nơi em sinh sống và tính góc nghiêng của Mặt Trời tại đó theo hai cách đã được đề cập trong bài toán (đo trực tiếp và tính theo công thức) và so sánh hai kết quả thu được. Chú ý: Công thức tính toán nói trên chính xác tới \( \pm 0,{5^ \circ }.\) Góc nghiêng của Mặt Trời có ảnh hưởng tới sự hấp thu nhiệt từ Mặt Trời của Trái Đất, tạo nên các mùa trong năm trên Trái Đất, chẳng hạn vào mùa hè, góc nghiêng lớn nên nhiệt độ cao. Lời giải: a) Ngày 10/10 là ngày thứ \(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 10 = 283\) của năm không nhuận nên \(m = 1\) và \(\varphi = {20^ \circ }.\) Thay \(m = 1,\,\,N = 283,\,\,\varphi = {20^ \circ }\) vào công thức tính góc nghiêng của Mặt Trời, ta được: \(\begin{array}{l}\alpha = {90^ \circ } - {20^ \circ } - \left| {\cos \left( {\left( {\frac{{2\left( {293 + 10} \right)}}{{365}} - 1} \right){{180}^ \circ }} \right)} \right|.23,{5^ \circ }\\\alpha = {70^ \circ } - \left| {\cos \frac{{221}}{{365}}{{.180}^ \circ }} \right|.23,{5^ \circ }\\\alpha \approx 62,{35^ \circ }\end{array}\) b) Bước 1: Xác định vĩ độ bằng cách sử dụng google map: Nhập địa chỉ nơi e sinh sống ( VD: Trường THPT chuyên Bắc Ninh) => Nhấp chuột trái vào đúng vị trí em muốn trên bản đồ. Vĩ độ là số ngay sau /@ trong URL, ngăn cách với kinh độ bằng dấu ,.
Chẳng hạn vĩ độ của trường THPT chuyên Bắc Ninh là 21.1908731. Bước 2: Tính góc nghiêng theo công thức đã cho. So sánh kết quả với cách sử dụng thước thẳng. Sachbaitap.com
Xem thêm tại đây:
Bài 5. Giá trị lượng giác của một góc từ 0 đến 180 độ
|
Giải bài 6 trang 38, 39 SBT Toán lớp 10 tập 1 Kết nối tri thức với cuộc sống: Hệ thức lượng trong tam giác. Bài 3.12. Một cây cổ thụ mọc thẳng đứng bên lề một con dốc có độ dốc 10 độ so với phương nằm ngang. Từ một điểm dưới chân dốc,