Bài 31 trang 10 Sách bài tập Hình học lớp 12 Nâng caoHãy tính thể tích của khối hộp Hãy tính thể tích của khối hộp nếu biết độ dài cạnh bên bằng a, diện tích hai mặt chéo lần lượt là \({S_1},{S_2}\) và góc giữa hai mặt chéo bằng \(\alpha \). Giải (h.15) Giả sử hình hộp đã cho là \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Gọi \({\rm{O}}{{\rm{O}}_1}\) là giao tuyến của hai mặt chéo. Trong hai mặt chéo \(\left( {{A_1}{C_1}CA} \right)\) và \(\left( {{B_1}{D_1}DB} \right)\), qua điểm \(I \in O{O_1}\), ta lần lượt kẻ hai đường thẳng KE và MH đều vuông góc với \(O{O_1}\). Khi đó \(\alpha = \left( {MH,KE} \right)\) và MEHK là thiết diện thẳng khối hộp. Đặt \(KE = x,MH = y\) thì \({S_{MEHK}} = {1 \over 2}xy\sin \alpha .\) Áp dụng kết quả bài tập 30, ta có: Vhộp = \({S_{MKHE}}.A{A_1} = {1 \over 2}xya\sin \alpha .\) Nhưng \(xa = {S_1},ya = {S_2}\) suy ra \(x = {{{S_1}} \over a},y = {{{S_2}} \over a} \Rightarrow xy = {{{S_1}{S_2}} \over {{a^2}}}.\) Vậy Vhộp\( = {{{S_1}{S_2}\sin \alpha } \over {2a}}.\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Thể tích của khối đa diện
|