Loading [Contrib]/a11y/accessibility-menu.js
🔥 2K8! SỐC! - 70% LỘ TRÌNH SUN 2026 (CHỈ CÒN 1TR299K)

Xuất phát sớm! Luyện thi TN THPT - ĐGNL - ĐGTD!

Chỉ còn 1 ngày
Xem chi tiết

Bài 3.1 trang 117 Sách bài tập (SBT) Đại số và giải tích 11

Khảo sát tính tăng, giảm của dãy số

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n\)

a)      Khảo sát tính tăng, giảm của dãy số ;

b)      Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số ;

c)      Tính tổng 100 số hạng đầu của dãy số.

Giải:

Quảng cáo

a)      Xét hiệu \(H = {u_{n + 1}} - {u_n} = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right) =  - 7 < 0\), vậy dãy số giảm.

b)      Do \({u_{n + 1}} = {u_n} - 7\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} =  - 6;d =  - 7\)

Công thức truy hồi là

\(\left\{ \matrix{
{u_1} = - 6 \hfill \cr
{u_{n + 1}} = {u_n} - 7{\rm\,\,{ với }}\,\,n \ge 1 \hfill \cr} \right.\)

c) \({S_{100}} =  - 35250\)    

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 3. Cấp số cộng