Xuất phát sớm! Luyện thi TN THPT - ĐGNL - ĐGTD!
Bài 3.1 trang 117 Sách bài tập (SBT) Đại số và giải tích 11Khảo sát tính tăng, giảm của dãy số Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n\) a) Khảo sát tính tăng, giảm của dãy số ; b) Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số ; c) Tính tổng 100 số hạng đầu của dãy số. Giải: Quảng cáo a) Xét hiệu \(H = {u_{n + 1}} - {u_n} = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right) = - 7 < 0\), vậy dãy số giảm. b) Do \({u_{n + 1}} = {u_n} - 7\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = - 6;d = - 7\) Công thức truy hồi là \(\left\{ \matrix{ c) \({S_{100}} = - 35250\)
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Cấp số cộng
|
Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng?
Tính số hạng đầu u1 và công sai d của cấp số cộng (un) biết :