Bài 3.2 trang 118 Sách bài tập (SBT) Đại số và giải tích 11Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng? Trong các dãy số (un)sau đây, dãy số nào là cấp số cộng ? a) \({u_n} = 3n - 1\) ; b) \({u_n} = {2^n} + 1\) ; c) \({u_n} = {\left( {n + 1} \right)^2} - {n^2}\) ; d) \(\left\{ \matrix{ Giải: a) \({u_{n + 1}} - {u_n} = 3\left( {n + 1} \right) - 1 - 3n + 1 = 3\) Vì \({u_{n + 1}} = {u_n} + 3\) nên \(\left( {{u_n}} \right)\) dãy số là cấp số cộng với \({u_1} = 2,d = 3.\) b) \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - {2^n} - 1 = {2^n}.\) Vì \({2^n}\) không là hằng số nên dãy số \(\left( {{u_n}} \right)\) không phải là cấp số cộng. c) Ta có \({u_n} = 2n + 1.\) Vì \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 1 - 2n - 1 = 2,\) nên dãy đã cho là cấp số cộng với \({u_1} = 3;d = 2.\) d) Để chứng tỏ \(\left( {{u_n}} \right)\) không phải là cấp số cộng, ta chỉ cần chỉ ra, chẳng hạn \({u_3} - {u_2} \ne {u_2} - {u_1}\) là đủ.
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Cấp số cộng
|
Tính số hạng đầu u1 và công sai d của cấp số cộng (un) biết :
Cho ba góc tạo thành một cấp số cộng theo thứ tự đó với công sai