Bài 3.10 trang 140 Sách bài tập (SBT) Hình học 11Cho hình chóp tam giác S.ABC Cho hình chóp tam giác S.ABC có \(SA = SB = SC = AB = AC = a\) và \(BC = a\sqrt 2 \). Tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {SC} \). Giải: Ta tính côsin của góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {AB} \). Ta có \(\eqalign{ Theo giả thiết ta suy ra hình chóp có các tam giác đều là SAB, SAC và các tam giác vuông là ABC vuông tại A và SBC vuông tại S. Do đó \(\overrightarrow {SA} .\overrightarrow {AB} = a.a.\cos 120^\circ = - {{{a^2}} \over 2}\) và \(\overrightarrow {AC} .\overrightarrow {AB} = 0\) Vậy \(\cos \left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = {{ - {{{a^2}} \over 2} + 0} \over {{a^2}}} = - {1 \over 2}\) Hay \(\left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = {120^0}\) Vậy góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {SC} ) bằng 120° Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 2. Hai đường thẳng vuông góc
|
Chứng minh rằng một đường thẳng vuông góc với một trong hai đường thằng song song thì vuông góc với đường thẳng kia.
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau ( hình hộp như vậy còn được gọi là hình hộp thoi). Chứng minh rằng AC ⊥ B’D’