Bài 3.11 trang 141 Sách bài tập (SBT) Hình học 11Tính góc giữa hai đường thẳng AB và SC. Cho hình chóp A.ABC có \(SA = SB = SC = AB = AC = a\) và \(BC = a\sqrt 2 \). Tính góc giữa hai đường thẳng AB và SC. Giải: Cách thứ nhất Dễ thấy tam giác ABC vuông tại A nên \(\overrightarrow {AC} .\overrightarrow {AB} = 0\) và tam giác SAB đều nên \(\left( {\overrightarrow {SA} ,\overrightarrow {AB} } \right) = {120^0}\). \(\eqalign{ Do đó góc giữa hai đường thẳng SC và AB bằng 60° Cách thứ hai Gọi M, N, P lần lượt là trung điểm của SA, SB. AC. Để tính góc giữa hai đường thẳng SC và AB, ta cần tính \(\widehat {NMP}\). Ta có \(NB = MP = {a \over 2},S{P^2} = {{3{a^2}} \over 4},B{P^2} = {{5{a^2}} \over 4}\) \(P{B^2} + S{P^2} = 2N{P^2} + {{S{B^2}} \over 2} \Rightarrow N{P^2} = {{3{{\rm{a}}^2}} \over 4}\) Mặt khác: \(N{P^2} = N{M^2} + M{P^2} - 2MN.MP\cos \widehat {NMP}\) \( \Rightarrow \cos \widehat {NMP} = - {{{{{a^2}} \over 4}} \over {2.{a \over 2}.{a \over 2}}} = - {1 \over 2} \Rightarrow \widehat {NMP} = {120^0}\) Vậy góc giữa hai đường thẳng SC và AB bằng 60°. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Hai đường thẳng vuông góc
|
Chứng minh rằng một đường thẳng vuông góc với một trong hai đường thằng song song thì vuông góc với đường thẳng kia.
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau ( hình hộp như vậy còn được gọi là hình hộp thoi). Chứng minh rằng AC ⊥ B’D’