Bài 3.15 trang 141 Sách bài tập (SBT) Hình học 11Chứng minh rằng AB và PQ vuông góc với nhau. Cho tứ diện ABCD trong đó \(AB \bot AC,AB \bot B{\rm{D}}\). Gọi P và Q lần lượt là trung điểm của AB và CD. Chứng minh rằng AB và PQ vuông góc với nhau. Giải: \(\eqalign{ Cộng từng vế (1) và (2) ta có: \(2\overrightarrow {PQ} = \overrightarrow {AC} + \overrightarrow {B{\rm{D}}} \) Suy ra \(2\overrightarrow {PQ} .\overrightarrow {AB} = \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {B{\rm{D}}} .\overrightarrow {AB} = 0\) Hay \(\overrightarrow {PQ} .\overrightarrow {AB} = 0\), tức là \(PQ \bot AB\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 2. Hai đường thẳng vuông góc
|
Chứng minh ba điểm A’, O, B’ thẳng hàng và AA’ = BB’
Chứng minh rằng hai mặt phẳng cắt nhau và giao tuyến d của chúng vuông góc với mặt phẳng (ABC)
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng:
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC).