Bài 3.18 trang 147 Sách bài tập (SBT) Hình học 11Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng: Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng: a) AA ⊥ BC và AA’ ⊥ B’C’. b) Gọi MM’ là giao tuyến của mặt phẳng (AHA’) với mặt bên BCC’B’, trong đó M ∈ BC và M’ ∈ B’C’. Chứng minh rằng tứ giác BCC’B là hình chữ nhật và MM’ là đường cao của hình chữ nhật đó. Giải:
a) \(BC \bot AH\) và \(BC \bot A'H\) vì \(A'H \bot \left( {ABC} \right)\) \( \Rightarrow BC \bot \left( {A'HA} \right) \Rightarrow BC \bot AA'\) Và \(B'C' \bot AA'\) vì \(BC\parallel B'C'\) b) Ta có \(AA'\parallel BB'\parallel CC'\) mà \(BC \bot AA'\) nên tứ giác BCC’B’ là hình chữ nhật. Vì \(AA'\parallel \left( {BCC'B'} \right)\) nên ta suy ra \(MM' \bot BC\) và \(MM' \bot B'C'\) hay MM’ là đường cao của hình chữ nhật BCC’B’. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Đường thẳng vuông góc với mặt phẳng
|
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC).
Hai tam giác cân ABC và DBC nằm trong hai mặt phẳng khác nhau có chung cạnh đáy BC tạo nên tứ diện ABCD. Gọi I là trung điểm của cạnh BC.
Chứng minh rằng tập hợp những điểm cách đều ba đỉnh của tam giác ABC là đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn (C) ngoại tiếp tam giác ABC đó.
Khi mặt phẳng (AA’C’C) vuông góc với mặt phẳng (BB’D’D)?