Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.17 trang 113 sách bài tập (SBT) – Hình học 12

Viết phương trình mặt phẳng trong các trường hợp sau:

Viết phương trình mặt phẳng \((\alpha )\) trong các trường hợp sau:

a) \((\alpha )\) đi qua điểm M(2;0; 1) và nhận \(\overrightarrow n  = (1;1;1)\) làm vecto pháp tuyến;

b) \((\alpha )\) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto \(\overrightarrow u  = (0;1;1),\overrightarrow v  = ( - 1;0;2)\);

c) \((\alpha )\) đi qua ba điểm M(1;1;1), N(4; 3; 2), P(5; 2; 1).

Hướng dẫn làm bài:

a) Phương trình  \((\alpha )\) có dạng:  (x – 2)+ (y) + (z – 1) = 0  hay x + y + z – 3 = 0

b) Hai vecto có giá song song với mặt phẳng  \((\alpha )\)   là: \(\overrightarrow u  = (0;1;1)\) và \(\overrightarrow v  = ( - 1;0;2)\).

Suy ra  \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n  = \overrightarrow u  \wedge \overrightarrow v  = (2; - 1;1)\)

Mặt phẳng  \((\alpha )\) đi qua điểm A(1; 0; 0) và nhận \(\overrightarrow n  = (2; - 1;1)\)  là vecto pháp tuyến. Vậy phương trình của \((\alpha )\) là: 2(x – 1) – y  +z = 0  hay 2x – y + z – 2 = 0

c) Hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {MN}  = (3;2;1)\)  và \(\overrightarrow {MP}  = (4;1;0)\)

Suy ra \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n  = \overrightarrow {MN}  \wedge \overrightarrow {MP}  = ( - 1;4; - 5)\)

Vậy phương trình của \((\alpha )\) là:  -1(x – 1) + 4(y – 1) – 5(z – 1) = 0 

hay x – 4y + 5z – 2 = 0

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Phương trình mặt phẳng