Bài 33 trang 43 SBT Hình học 10 Nâng caoGiải bài tập Bài 33 trang 43 SBT Hình học 10 Nâng cao Cho điểm \(P\) cố định nằm trong đường tròn \((O ; R)\) và hai điểm \(A, B\) chạy trên đường tròn đó sao cho góc \(APB\) luôn bằng \(90^0\). Gọi \(M\) là trung điểm của dây \(AB\) và \(H\) là hình chiếu của \(P\) xuống \(AB\). Chứng minh rằng \(M ,H\) luôn cùng thuộc một đường tròn cố định. Giải: (h.39).
Ta có \({\wp _{H/(O)}} = \overrightarrow {HA} .\overrightarrow {HB} = - H{P^2}\) và \({\wp _{H/(O)}} = H{O^2} - {R^2}\), suy ra .. hay \(H{O^2} + H{P^2} = {R^2}\). (*) Tương tự \({\wp _{M/(O)}} = \overrightarrow {MA} .\overrightarrow {MB} = - M{B^2}\) và \({\wp _{M/(O)}} = M{O^2} - {R^2}\). Mặt khác tam giác vuông \(APB\) có trung tuyến \(MP = \dfrac{1}{2}AB = MB\). Từ đó suy ra \(M{O^2} - {R^2} = - M{P^2}\) hay \(M{O^2} + M{P^2} = {R^2}\). (**) Từ (*) và (**) ta có \(H, M\) cùng thuộc đường tròn có tâm là trung điểm của \(OP\) và bán kính bằng \(\dfrac{1}{2}\sqrt {2{R^2} - O{P^2}} \). Sachbaitap.com
Xem thêm tại đây:
Bài 2. Tích vô hướng của hai vec tơ
|