Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 33 trang 43 SBT Hình học 10 Nâng cao

Giải bài tập Bài 33 trang 43 SBT Hình học 10 Nâng cao

Cho điểm \(P\) cố định nằm trong đường tròn \((O ; R)\) và hai điểm \(A, B\) chạy trên đường tròn đó sao cho góc \(APB\) luôn bằng \(90^0\). Gọi \(M\) là trung điểm của dây \(AB\) và \(H\) là hình chiếu của \(P\) xuống \(AB\). Chứng minh rằng \(M ,H\)  luôn cùng thuộc một đường tròn cố định.

Giải:

(h.39).

 

Ta có \({\wp _{H/(O)}} = \overrightarrow {HA} .\overrightarrow {HB}  =  - H{P^2}\) và \({\wp _{H/(O)}} = H{O^2} - {R^2}\), suy ra .. hay \(H{O^2} + H{P^2} = {R^2}\).        (*)

Tương tự \({\wp _{M/(O)}} = \overrightarrow {MA} .\overrightarrow {MB}  =  - M{B^2}\) và \({\wp _{M/(O)}} = M{O^2} - {R^2}\).

Mặt khác tam giác vuông \(APB\) có trung tuyến \(MP = \dfrac{1}{2}AB = MB\).

Từ đó suy ra \(M{O^2} - {R^2} =  - M{P^2}\) hay \(M{O^2} + M{P^2} = {R^2}\).          (**)

Từ (*) và (**) ta có \(H, M\) cùng thuộc đường tròn có tâm là trung điểm của \(OP\) và bán kính bằng \(\dfrac{1}{2}\sqrt {2{R^2} - O{P^2}} \).

Sachbaitap.com