Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.31 trang 153 Sách bài tập (SBT) Hình học 11

Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD).

Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử \(\left( \alpha  \right)\) là mặt phẳng đi qua A và vuông góc với cạnh SC, \(\left( \alpha  \right)\) cắt SC tại I.

a) Xác định giao điểm K của SO với mặt phẳng \(\left( \alpha  \right)\).

b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và \(B{\rm{D}}\parallel \left( \alpha  \right)\).

c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng \(\left( \alpha  \right)\). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng \(\left( \alpha  \right)\).

Giải:

a) Gọi I là giao điểm của mặt phẳng \(\left( \alpha  \right)\) với cạnh SC. Ta có \(\left( \alpha  \right) \bot SC,AI \subset \left( \alpha  \right) \Rightarrow SC \bot AI\). Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và \(AI \subset \left( \alpha  \right)\), nên K là giao điểm của SO với \(\left( \alpha  \right)\).

b) Ta có

\(\left. \matrix{
B{\rm{D}} \bot AC \hfill \cr
B{\rm{D}} \bot SA \hfill \cr} \right\} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\) 

\( \Rightarrow B{\rm{D}} \bot SC\)

Mặt khác \(B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\) nên \(\left( {SB{\rm{D}}} \right) \bot \left( {SAC} \right)\).

Vì \(B{\rm{D}} \bot SC\) và \(\left( \alpha  \right) \bot SC\) nhưng BD không chứa trong \(\left( \alpha  \right)\) nên \(B{\rm{D}}\parallel \left( \alpha  \right)\)

Ta có \(K = SO \cap \left( \alpha  \right)\) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của \(\left( \alpha  \right)\) và (SBD). Mặt phẳng (SBD) chứa \(B{\rm{D}}\parallel \left( \alpha  \right)\) nên cắt  theo giao tuyến \(d\parallel B{\rm{D}}\). Giao tuyến này đi qua K là điểm chung của \(\left( \alpha  \right)\) và (SBD). Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

Sachbaitap.com

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 4. Hai mặt phẳng vuông góc