Bài 3.44 trang 131 sách bài tập (SBT) – Hình học 12Cho mặt phẳng : 2x + y +z – 1 = 0 và đường thẳng d: Gọi M là giao điểm của d và , hãy viết phương trình của đường thẳng đi qua M vuông góc với d và nằm trong Cho mặt phẳng \((\alpha )\) : 2x + y +z – 1 = 0 và đường thẳng d: \({{x - 1} \over 2} = {y \over 1} = {{z + 2} \over { - 3}}\) Gọi M là giao điểm của d và \((\alpha )\) , hãy viết phương trình của đường thẳng \(\Delta \) đi qua M vuông góc với d và nằm trong \((\alpha )\) Hướng dẫn làm bài Phương trình tham số của đường thẳng d: \(\left\{ {\matrix{{x = 1 + 2t} \cr {y = t} \cr {z = - 2 - 3t} \cr} } \right.\) Xét phương trình: \(2(1 + 2t) + (t) + ( - 2 – 3t) – 1 = 0 \Leftrightarrow 2t – 1 = 0 \Leftrightarrow t = {1 \over 2}\) Vậy đưởng thẳng d cắt mặt phẳng \((\alpha )\) tại điểm \(M(2;{1 \over 2}; - {7 \over 2})\). Ta có vecto pháp tuyến của mặt phẳng \((\alpha )\) và vecto chỉ phương của đường thẳng d lần lượt là \(\overrightarrow {{n_\alpha }} = (2;1;1)\) và \(\overrightarrow {{a_d}} = (2;1; - 3)\). Gọi \(\overrightarrow {{a_\Delta }} \) là vecto pháp tuyến của \(\Delta \), ta có \(\overrightarrow {{a_\Delta }} \bot \overrightarrow {{n_\alpha }} \) và \(\overrightarrow {{a_\Delta }} \bot \overrightarrow {{a_d}} \). Suy ra \(\overrightarrow {{a_\Delta }} = \overrightarrow {{n_\alpha }} \wedge \overrightarrow {{n_d}} = ( - 4;8;0)\) hay \(\overrightarrow {{a_\Delta }} = (1; - 2;0)\) Vậy phương trình tham số của \(\Delta \) là \(\left\{ {\matrix{{x = 2 + t} \cr {y = {1 \over 2} - 2t} \cr {z = - {7 \over 2}} \cr} } \right.\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Phương trình đường thẳng - SBT Toán 12
|
Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với đường thẳng d
Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và song song với mặt phẳng (Q): x – z = 0.
Lập phương trình mặt phẳng (P) đi qua ba điểm A(-1; -3; 2), B(-2; 1; 1) và C(0; 1; -1).