Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12Cho hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau. Cho hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau. Hướng dẫn làm bài: Ta có: \(M(x,y,z) \in (P) \Leftrightarrow d(M,({P_1})) = d(M,({P_2}))\) \(\Leftrightarrow {{|2x + y + 2z + 1|} \over {\sqrt {4 + 1 + 4} }} = {{|4x - 2y - 4z + 7|} \over {\sqrt {16 + 4 + 16} }}\) \(\Leftrightarrow 2|2x + y + 2z + 1| = |4x - 2y - 4z + 7|\) \(\Leftrightarrow \left[ {\matrix{{4x + 2y + 4z + 2 = 4x - 2y - 4z + 7} \cr {4x + 2y + 4z + 2 = - (4x - 2y - 4z + 7)} \cr} } \right.\) \(\Leftrightarrow \left[ {\matrix{{4y + 8z - 5 = 0} \cr {8x + 9 = 0} \cr} } \right.\) Từ đó suy ra phương trình mặt phẳng phải tìm là: \(4y + 8z – 5 = 0\) hoặc \(8x + 9 = 0\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
ÔN TẬP CHƯƠNG III - PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
|
Cho hai đường thẳng d: và d1: Lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.
Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y +3z + 1 = 0 và (R): x – 2y – z + 8 = 0
Lập phương trình tham số của đường thẳng d đi qua hai điểm phân biệt M0(x0 ;y0; z0) và M1(x1, y1, z1)
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và vuông góc với mặt phẳng (P): Ax + By + Cz + D = 0.