Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.55 trang 132 sách bài tập (SBT) – Hình học 12

Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y +3z + 1 = 0 và (R): x – 2y – z + 8 = 0

Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y  +3z + 1 = 0  và  (R): x – 2y – z + 8 = 0

Hướng dẫn làm bài:

Chọn:

\(\eqalign{& \overrightarrow {{n_P}} = \overrightarrow {{n_Q}} \wedge \overrightarrow {{n_R}} \cr & = \left( {\left| {\matrix{{\matrix{{ - 1} \cr { - 2} \cr} } & {\matrix{3 \cr { - 1} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{3 \cr { - 1} \cr} } & {\matrix{2 \cr 1 \cr} } \cr} } \right|;\left| {\matrix{{\matrix{2 \cr 1 \cr} } & {\matrix{{ - 1} \cr { - 2} \cr} } \cr} } \right|} \right) = \left( {7;5; - 3} \right) \cr} \)

Phương trình của (P) là: 

\(7(x – 1) + 5(y  +3) – 3(z – 2) = 0\)

Hay  \(7x + 5y – 3z  +14 = 0\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.