Bài 3.55 trang 132 sách bài tập (SBT) – Hình học 12Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y +3z + 1 = 0 và (R): x – 2y – z + 8 = 0 Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với hai mặt phẳng (Q): 2x – y +3z + 1 = 0 và (R): x – 2y – z + 8 = 0 Hướng dẫn làm bài: Chọn: \(\eqalign{& \overrightarrow {{n_P}} = \overrightarrow {{n_Q}} \wedge \overrightarrow {{n_R}} \cr & = \left( {\left| {\matrix{{\matrix{{ - 1} \cr { - 2} \cr} } & {\matrix{3 \cr { - 1} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{3 \cr { - 1} \cr} } & {\matrix{2 \cr 1 \cr} } \cr} } \right|;\left| {\matrix{{\matrix{2 \cr 1 \cr} } & {\matrix{{ - 1} \cr { - 2} \cr} } \cr} } \right|} \right) = \left( {7;5; - 3} \right) \cr} \) Phương trình của (P) là: \(7(x – 1) + 5(y +3) – 3(z – 2) = 0\) Hay \(7x + 5y – 3z +14 = 0\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
ÔN TẬP CHƯƠNG III - PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
|
Lập phương trình tham số của đường thẳng d đi qua hai điểm phân biệt M0(x0 ;y0; z0) và M1(x1, y1, z1)
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và vuông góc với mặt phẳng (P): Ax + By + Cz + D = 0.
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau (P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0 và đường thẳng d: Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).