Bài 3.58 trang 132 sách bài tập (SBT) – Hình học 12Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau (P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau (P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 Hướng dẫn làm bài: Do (P) và (Q) cắt nhau nên \(\overrightarrow {{n_P}} \wedge \overrightarrow {{n_Q}} \ne \overrightarrow 0 \) . Đường thẳng d đi qua M0và có vecto chỉ phương \(\overrightarrow {{n_P}} \wedge \overrightarrow {{n_Q}} = (\left| {\matrix{{\matrix{B \cr {B'} \cr} } & {\matrix{C \cr {C'} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{C \cr {C'} \cr} } & {\matrix{A \cr {A'} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{A \cr {A'} \cr} } & {\matrix{B \cr {B'} \cr}} \cr} } \right|)\) Do đó phương trình tham số của d là: \(\left\{ {\matrix{{x = {x_0} + \left| {\matrix{{\matrix{B \cr {B'} \cr} } & {\matrix{C \cr {C'} \cr} } \cr} } \right|t} \cr {y = {y_0} + \left| {\matrix{{\matrix{C \cr {C'} \cr} } & {\matrix{A \cr {A'} \cr} } \cr} } \right|t} \cr {z = {z_0} + \left| {\matrix{{\matrix{A \cr {A'} \cr} } & {\matrix{B \cr {B'} \cr} } \cr} } \right|t} \cr} } \right.\) Đặc biệt phương trình trên cũng là phương trình đường thẳng là giao của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 với M0 là điểm chung của (P) và (Q). Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
ÔN TẬP CHƯƠNG III - PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
|
Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0 và đường thẳng d: Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: Viết phương trình đường thẳng đi qua A , cắt và vuông góc với đường thẳng d.
Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho . Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.