Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.55 trang 163 Sách bài tập (SBT) Toán Hình Học 10

Trong mặt phẳng tọa độ Oxy cho đường tròn (C)

Trong mặt phẳng tọa độ Oxy cho đường tròn (C) : \({(x - 2)^2} + {y^2} = {4 \over 5}\) và đường thẳng \({\Delta _1}:x - y = 0\), \({\Delta _2}:x - 7y = 0\). Xác định tọa độ tâm K vàn bán kính của đường tròn (C1) ; biết đường tròng (C1) tiếp xúc với các đường thẳng \({\Delta _1}\), \({\Delta _2}\) và tâm K không thuộc đường tròn (C).

Gợi ý làm bài

(Xem hình 3.15)

Gọi \(K\left( {a;b} \right)\,;\,k \in (C) \Leftrightarrow {\left( {a - 2} \right)^2} + {b^2} = {5 \over 4}\,\,\,\,\,(1)\)

\(({C_1})\) tiếp xúc với \({\Delta _1},{\Delta _2} \Leftrightarrow {{\left| {a - b} \right|} \over {\sqrt 2 }} = {{\left| {a - 7b} \right|} \over {5\sqrt 2 }}\,\,(2).\)

Từ (1) và (2) cho ta : 

\(\left\{ \matrix{
5{\left( {a - 2} \right)^2} + 5{b^2} = 4 \hfill \cr
5\left| {a - b} \right| = \left| {a - 7b} \right| \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
5{\left( {a - 2} \right)^2} + 5{b^2} = 4 \hfill \cr
5\left( {a - b} \right) = a - 7b \hfill \cr} \right.\,\,\,\,(I)\,\,\,\)

và 

\(\left\{ \matrix{
5{\left( {a - 2} \right)^2} + 5{b^2} = 4 \hfill \cr
5(a - b) = 7b - a \hfill \cr} \right.\,\,\,\,\,\,(II)\)

\((I) \Leftrightarrow \left\{ \matrix{
25{a^2} - 20a + 16 = 0 \hfill \cr
b = - 2a \hfill \cr} \right.\)

(vô nghiệm)

\((II) \Leftrightarrow \left\{ \matrix{
a = 2b \hfill \cr
25{b^2} - 40b + 16 = 0 \hfill \cr} \right.\)

\( \Leftrightarrow \left( {a;b} \right) = \left( {{8 \over 5};{4 \over 5}} \right).\)

Bán kính (C1): \(R = {{\left| {a - b} \right|} \over {\sqrt 2 }} = {{2\sqrt 2 } \over 5}.\)

Vậy \(K\left( {{8 \over 5};{4 \over 5}} \right)\) và \(R = {{2\sqrt 2 } \over 5}.\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.