Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.59 trang 163 Sách bài tập (SBT) Toán Hình Học 10

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0;2), B(-2;-2) và C(4;-2). Gọi H là chân đường cao kẻ từ B; M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N. 

Gợi ý làm bài

(Xem hình 3.18)

Ta có \(M\left( { - 1;0} \right),N\left( {1; - 2} \right),AC = \left( {4; - 4} \right)\)

Giả sử H(x;y) . Ta có : 

\(\eqalign{
& \left\{ \matrix{
\overrightarrow {BH} \bot \overrightarrow {AC} \hfill \cr
H \in AC \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4(x + 2) - 4(y + 2) = 0 \hfill \cr
4x + 4(y - 2) = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = 1 \hfill \cr
y = 1 \hfill \cr} \right. \Rightarrow H\left( {1;1} \right). \cr} \)

Giả sử phương trình đường tròn cần tìm là:

\({x^2} + {y^2} + 2ax + 2by + c = 0\,\,\,\,\,\,\,\,(1).\)

Thay tọa độ của M, N, H vào (1) ta có hệ điều kiện : 

\(\left\{ \matrix{
2a - c = 1 \hfill \cr
2a - 4b + c = - 5 \hfill \cr
2a + 2b + c = - 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = - {1 \over 2} \hfill \cr
b = {1 \over 2} \hfill \cr
c = - 2. \hfill \cr} \right.\)

Vậy phương trình đường tròn cần tìm là: 

\({x^2} + {y^2} - x + y - 2 = 0\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.