Bài 36 trang 106 SBT Hình học 10 Nâng caoGiải bài tập Bài 36 trang 106 SBT Hình học 10 Nâng cao a) Cho tam giác \(ABC\) cân tại \(A\), biết phương trình các đường thẳng \(AB, BC\) lần lượt là \(x+2y-1=0\) và \(3x-y+5=0\). Viết phương trình đường thẳng \(AC\) biết rằng đường thẳng \(AC\) đi qua điểm \(M(1 ; -3).\) b) Cho hai đường thẳng \({\Delta _1}: 2x - y + 5 = 0 , \) \( {\Delta _2}: 3x + 6y - 1 = 0\) và điểm \(M(2 ; -1)\). Viết phương trình đường thẳng \(\Delta \) đi qua \(M\) và tạo với hai đường thẳng \(\Delta_1 \), \(\Delta_2 \) một tam giác cân có đỉnh là giao điểm của \(\Delta_1 \) và \(\Delta_2 \). Giải a) Đường thẳng \(AB\) có vec tơ pháp tuyến \(\overrightarrow {{n_1}} (1 ; 2)\), đường thẳng \(BC\) có vec tơ pháp tuyến \(\overrightarrow {{n_2}} (3 ; - 1)\). Đường thẳng \(AC\) qua \(M\) nên có phương trình: \(\alpha (x - 1) + \beta (y + 3) = 0 ({\alpha ^2} + {\beta ^2} \ne 0)\). Tam giác \(ABC\) cân tại đỉnh \(A\) nên ta có Với \(\alpha = \dfrac{1}{2}\beta \), chọn \(\beta = 2, \alpha = 1\) ta được đường thẳng \(AC\): \(x+2y+5=0\). Trường hợp này bị loại vì khi đó đường thẳng \(AC\) song song với đường thẳng \(AB.\) Với \(\alpha = \dfrac{2}{{11}}\beta \), ta chọn \(\beta = 11, \alpha = 2\) ta được đường thẳng \(AC\): \(2x+11y+31=0.\) b) Hãy viết phương trình đường thẳng \(\Delta \) đi qua \(M\) và vuông góc với mỗi đường phân giác của các góc tạo bởi \({\Delta _1}\) và \({\Delta _2}\). Ta tìm được hai đường thẳng thỏa mãn bài toán là : \(3x+y-5=0\) và \(x-3y-5=0.\) Sachbaitap.com
Xem thêm tại đây:
Bài 3. Khoảng cách và góc.
|