Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.6 trang 143 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC, biết phương trình đường thẳng

Cho tam giác ABC, biết phương trình đường thẳng AB:x - 3y + 11 = 0, đường cao AH = 3x + 7y - 15 = 0, đường cao BH:3x - 5y + 13 = 0. Tìm phương trình hai đường thẳng chứa hai cạnh còn lại của tam giác.

Gợi ý làm bài

Theo đề bài tọa độ điểm A luôn thỏa mãn hệ phương trình:

\(\left\{ \matrix{
x - 3y = - 11 \hfill \cr
3x + 7y = 15 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 \hfill \cr
y = 3. \hfill \cr} \right.\)

Vì \(AC \bot BH\) nên C có dạng: 5x + 3y + c = 0, ta có:

\(A \in AC \Leftrightarrow  - 10 + 9 + c = 0 \Leftrightarrow c = 1.\)

Vậy phương trình đường thẳng chứa cạnh AC: 5x + 3y + 1 = 0.

Tọa độ của điểm B luôn thỏa mãn hệ phương trình: 

\(\left\{ \matrix{
x - 3y = - 11 \hfill \cr
3x - 5y = - 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 4 \hfill \cr
y = 5. \hfill \cr} \right.\)

Vì \(BC \bot AH\) nên BC có dạng: \(7x - 3y + c = 0\), ta có:

\(B \in BC \Leftrightarrow 28 - 15 + c = 0 \Leftrightarrow c =  - 13.\)

Vậy phương trình đường thẳng chứa cạnh BC: 7x - 3y - 13 = 0.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.