Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.6 trang 69 Sách bài tập (SBT) Đại số và giải tích 11

Biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 97.

Xác định hệ số của số hạng chứa trong khai triển \({\left( {{x^2} - {2 \over x}} \right)^n}\) nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 97.

Giải:

Ta có:

\({\left( {{x^2} - {2 \over x}} \right)^n} = C_n^0{\left( {{x^2}} \right)^n} + C_n^1{\left( {{x^2}} \right)^{n - 1}}.\left( { - {2 \over x}} \right) + C_n^2{\left( {{x^2}} \right)^{n - 2}}.{\left( { - {2 \over x}} \right)^2} + ...\) 

Theo giả thiết, ta có: 

\(\eqalign{
& C_n^0 - 2C_n^1 + 4C_n^2 = 97 \cr
& \Leftrightarrow 1 - 2n + 2n\left( {n - 1} \right) - 97 = 0 \cr
& \Leftrightarrow {n^2} - 2n - 48 = 0 \cr
& \Leftrightarrow \left[ \matrix{
n = 8 \hfill \cr
n = - 6{\rm{ }}\left( {loại} \right) \hfill \cr} \right. \cr}\)

Vậy n = 8. Từ đó ta có:

\(\eqalign{
& {\left( {{x^2} - {2 \over x}} \right)^8} \cr
& = \sum\limits_{k = 0}^8 {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}{{\left( { - {2 \over x}} \right)}^k}} \cr
& = \sum\limits_{k = 0}^8 {{{\left( { - 2} \right)}^k}.C_8^k.{x^{16 - 3k}}} \cr} \) 

Như vậy, ta phải có \(16 - 3k = 4 \Leftrightarrow k = 4\). 

Do đó hệ số của số hạng chứa x4 là \({\left( { - 2} \right)^4}.C_8^4 = 1120\).

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 3. Nhị thức Niu-tơn