Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12

Cho hình chóp S.ABCD có đáy lầ hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0), . Gọi M là trung điểm cạnh SC.

Cho hình chóp S.ABCD có đáy là hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0),\(S(0;0;2\sqrt 2 )\) . Gọi M là trung điểm cạnh SC.

a) Viết phương trình mặt phẳng chứa SA và song song với BM.

b) Tính khoảng cách giữa hai đường thẳng SA và BM.

Hướng dẫn làm bài

a) Ta có  C(-2; 0; 0) và \(M( - 1;0;\sqrt 2 )\)

Gọi \((\alpha )\)  là mặt phẳng chứa SA và song song với BM. Hai vecto có giá song song hoặc nằm trên \((\alpha )\)  là \(\overrightarrow {SA}  = (2;0; - 2\sqrt 2 )\)  và \(\overrightarrow {BM}  = ( - 1; - 1;\sqrt 2 )\)

Suy ra vecto pháp tuyến của \((\alpha )\)   là : \(\overrightarrow n  = ( - 2\sqrt 2 ;0; - 2)\) hay \(\overrightarrow n ' = (\sqrt 2 ;0;1)\)

Mặt phẳng \((\alpha )\)  có phương trình: \(\sqrt 2 (x - 2) + z = 0\)  hay \(\sqrt 2 x + z - 2\sqrt 2  = 0\)

b) Ta có \(d\left( {SA,{\rm{ }}BM} \right){\rm{ }} = d(B;(\alpha )) = {{| - 2\sqrt 2 |} \over {\sqrt {2 + 1} }} = {{2\sqrt 2 } \over {\sqrt 3 }}\)

Vậy khoảng cách giữa hai đường thẳng SA và BM là  \({{2\sqrt 6 } \over 3}\).

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.