Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.68 trang 164 Sách bài tập (SBT) Toán Hình Học 10

Trong mặt phẳng tọa độ Oxy, cho điểm C(2;0) và elip (E)

Trong mặt phẳng tọa độ Oxy, cho điểm C(2;0) và elip (E): \({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\). Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều.

Gợi ý làm bài

Giả sử \(A\left( {{x_0};{y_0}} \right)\). Do A, B đối xứng nhau qua Ox nên \(B({x_0}; - {y_0})\)

Ta có : \(A{B^2} = 4y_0^2\) và \(A{C^2} = {\left( {{x_0} - 2} \right)^2} + y_0^2.\)

Vì \(A \in (E)\) nên \({{x_0^2} \over 4} + y_0^2 = 1 \Rightarrow y_0^2 = 1 - {{x_0^2} \over 4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

Vì AB = AC nên \({\left( {{x_0} - 2} \right)^2} + y_0^2 = 4y_0^2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)

Thay (1) vào (2) và rút gọn ta được 

\(7x_0^2 - 16{x_0} + 4 = 0 \Leftrightarrow \left[ \matrix{
{x_0} = 2 \hfill \cr
{x_0} = {2 \over 7}. \hfill \cr} \right.\)

Với \({x_0} = 2\) thay vào (1) ta có \({y_0} = 0.\) Trường hợp này loại vì \(A \equiv C.\)

Với \({x_0} = {2 \over 7}\) thay vào (1) ta có \({y_0} =  \pm {{4\sqrt 3 } \over 7}.\)

Vậy \(A\left( {{2 \over 7};{{4\sqrt 3 } \over 7}} \right),B\left( {{2 \over 7}; - {{4\sqrt 3 } \over 7}} \right)\) hoặc \(A\left( {{2 \over 7}; - {{4\sqrt 3 } \over 7}} \right),B\left( {{2 \over 7};{{4\sqrt 3 } \over 7}} \right)\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.