Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.7 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Cho cấp số cộng chứng minh rằng nếu

Cho cấp số cộng \(\left( {{u_n}} \right)\) chứng minh rằng

Nếu \({{{S_m}} \over {{S_n}}} = {{{m^2}} \over {{n^2}}}\)

Thì \({{{u_m}} \over {{u_n}}} = {{2m - 1} \over {2n - 1}}\)                             

Giải:

Ta có \({S_m} = {{2{u_1} + \left( {m - 1} \right)d} \over 2}m\) ;

\({S_n} = {{2{u_1} + \left( {n - 1} \right)d} \over 2}n.\)           

Theo giả thiết

\({{{S_m}} \over {{S_n}}} = {{\left[ {2{u_1} + \left( {m - 1} \right)d} \right]m} \over {\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}} = {{{m^2}} \over {{n^2}}}\)         

Suy ra \(\left( {2{u_1} - d} \right)\left( {m - n} \right) = 0\) (với m ≠ n ).

Từ đó \({u_1} = {d \over 2}\)

Vậy \({{{u_m}} \over {{u_n}}} = {{{u_1} + \left( {m - 1} \right)d} \over {{u_1} + \left( {n - 1} \right)d}} = {{{d \over 2} + \left( {m - 1} \right)d} \over {{d \over 2} + \left( {n - 1} \right)d}} = {{2m - 1} \over {2n - 1}}\)

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 3. Cấp số cộng