Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.7 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Cho cấp số cộng chứng minh rằng nếu

Cho cấp số cộng \(\left( {{u_n}} \right)\) chứng minh rằng

Nếu \({{{S_m}} \over {{S_n}}} = {{{m^2}} \over {{n^2}}}\)

Thì \({{{u_m}} \over {{u_n}}} = {{2m - 1} \over {2n - 1}}\)                             

Giải:

Ta có \({S_m} = {{2{u_1} + \left( {m - 1} \right)d} \over 2}m\) ;

\({S_n} = {{2{u_1} + \left( {n - 1} \right)d} \over 2}n.\)           

Theo giả thiết

\({{{S_m}} \over {{S_n}}} = {{\left[ {2{u_1} + \left( {m - 1} \right)d} \right]m} \over {\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}} = {{{m^2}} \over {{n^2}}}\)         

Suy ra \(\left( {2{u_1} - d} \right)\left( {m - n} \right) = 0\) (với m ≠ n ).

Từ đó \({u_1} = {d \over 2}\)

Vậy \({{{u_m}} \over {{u_n}}} = {{{u_1} + \left( {m - 1} \right)d} \over {{u_1} + \left( {n - 1} \right)d}} = {{{d \over 2} + \left( {m - 1} \right)d} \over {{d \over 2} + \left( {n - 1} \right)d}} = {{2m - 1} \over {2n - 1}}\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Cấp số cộng