Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 46 trang 11 Sách bài tập Hình học lớp 12 Nâng cao

Cho khối lập phương ABCD.A’B’C’D’ cạnh a.

Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm EF lần lượt là trung điểm của C’B’C’D’.

a) Dựng thiết diện của khối lập phương khi cắt bởi \(mp\left( {AEF} \right).\)

b) Tính tỉ số thể tích hai phần của khối lập phương bị chia bởi mặt phẳng \(\left( {AEF} \right).\)

Giải

a) Đường thẳng EF cắt A’D’ tại N, cắt A’B’ tại M, AN cắt DD’ tại P, AM cắt BB’ tại Q. Vậy thiết diện là ngũ giác APFEQ.

b) Đặt :

\(\eqalign{  & V = {V_{ABCD.A'B'C'D'}},  \cr  & {V_1} = {V_{ABCDC'QEFP}},  \cr  & {V_2} = {V_{AQEFP.B'A'D'}},  \cr  & {V_3} = {V_{A.MA'N}},  \cr  & {V_4} = {V_{PFD'N}},{V_5} = {V_{QMB'E}}. \cr} \)

Dễ thấy \({V_4} = {V_5}\) ( do tính đối xứng của hình lập phương),

\(\eqalign{  & {V_3} = {1 \over 6}AA'.A'M.A'N = {1 \over 6}a.{{3a} \over 2}.{{3a} \over 2} = {{3{a^3}} \over 8},  \cr  & {V_4} = {1 \over 6}PD'.D'F.D'N = {1 \over 6}.{a \over 3}.{a \over 2} .{a \over 2} = {{{a^3}} \over {72}},  \cr  & {V_2} = {V_3} - 2{V_4} = {{3{a^3}} \over 8} - {{2{a^3}} \over {72}} = {{25{a^3}} \over {72}},  \cr  & {V_1} = V - {V_2} = {a^3} - {{25{a^3}} \over {72}} = {{47} \over {72}}{a^3}. \cr} \)

Mặt phẳng \(\left( {AEF} \right)\) chia khối lập phương thành hai phần lần lượt có thể tích là \({V_1} = {{47} \over {72}}{a^3},{V_2} = {{25{a^3}} \over {72}}.\)

Vậy : \({{{V_1}} \over {{V_2}}} = {{47} \over {25}}.\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.