Bài 49 trang 63, 64 Sách bài tập Hình học lớp 12 Nâng caoCho hình nón đỉnh S có bán kính đáy R, Cho hình nón đỉnh S có bán kính đáy R, góc ở đỉnh là \(2\alpha ,\;{45^0} < \alpha < {90^0}.\) 1) Tính diện tích xung quanh và thể tích hình nón. 2) Tính diện tích thiết diện do mp(P) cắt hình nón theo hai đường sinh vuông góc với nhau. 3) Xét hai điểm A, B thay đổi trên đáy sao cho góc giữa mp(SAB) và mặt đáy hình nón bằng \(\beta\; (\beta < {90^ \circ })\) . Chứng minh rằng đường thẳng SI ( I là trung điểm của AB) luôn thuộc một hình nón cố định. Giải 1) Ta có \(SM = {{OM} \over {\sin \alpha }} = {R \over {\sin \alpha }}\) \(SO = R\cot \alpha .\) Diện tích xung quanh của hình nón là \({S_{xq}} = \pi R.{R \over {\sin \alpha }} = {{\pi {R^2}} \over {\sin \alpha }}.\) Thể tích khối nón là \(V = {1 \over 3}\pi {R^2}.R\cot \alpha = {1 \over 3}\pi {R^3}\cot \alpha .\) 2) Giả sử (P) cắt hình nón theo thiết diện SMN và \(SM \bot SN,\) khi đó diện tích thiết diện là \({S_1} = {1 \over 2}SM.SN = {{{R^2}} \over {2{{\sin }^2}\alpha }}.\) 3) Với I là trung điểm của AB thì \(\widehat {SIO} =\beta ,\)\(OI = SO\cot \beta = R.\cot \alpha .\cot \beta .\) Vậy điểm I thuộc đường tròn tâm O bán kính \(R.\cot \alpha .\cot \beta \) trong mặt phẳng chứa đáy hình nón. Vì SI quay quanh S và dựa vào đường tròn tâm O, bán kính \(R.\cot \alpha .\cot \beta \) trong mặt phẳng chứa đáy hình nón đã cho nên SI thuộc một hình nón cố định với đường cao SO, đường tròn đáy của hình nón này là đường tròn đã nêu trên. Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương II - Mặt cầu, mặt trụ, mặt nón
|
Một hình trụ có diện tích xung quanh bằng 4,