Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 53 trang 108 SBT Hình học 10 Nâng cao

Giải bài tập Bài 53 trang 108 SBT Hình học 10 Nâng cao

Cho đường tròn \((C): {x^2} + {y^2} - 2x + 6y + 5 = 0\) và đường thẳng \(d: 2x+y-1=0\). Viết phương trình tiếp tuyến \(\Delta \) của \((C)\), biết \(\Delta \) song song với \(d\). Tìm tọa độ tiếp điểm.

Giải

\((C)\) có tâm \(I(1 ; -3)\), bán kính  \(R = \sqrt {{1^2} + {3^2} - 5}  = \sqrt 5 \).

\(\Delta //d \Rightarrow   \Delta \) có phương trình : \(2x + y + m = 0  (m \ne  - 1)\).

\(\Delta \) tiếp xúc với \((C)\)

\( \Leftrightarrow   d(I ; \Delta ) = R  \\  \Leftrightarrow    \dfrac{{|2 - 2 + m|}}{{\sqrt {{2^2} + {1^2}} }} = \sqrt 5  \\   \Leftrightarrow   |m - 1| = 5  \\  \Leftrightarrow   \left[ \begin{array}{l}m = 6\\m =  - 4.\end{array} \right.\)

Có hai tiếp tuyến cần tìm là :

\(\begin{array}{l}{\Delta _1}:  2x + y + 6 = 0;\\{\Delta _2}:  2x + y - 4 = 0.\end{array}\)

Tọa độ tiếp điểm \(M\) của \({\Delta _1}\) với \((C)\) là nghiệm của hệ

\(\left\{ \begin{array}{l}2x + y + 6 = 0\\{x^2} + {y^2} - 2x + 6y + 5 = 0\end{array} \right. \)

\(   \Leftrightarrow   \left\{ \begin{array}{l}x =  - 1\\y =  - 4\end{array} \right.\). Vậy \(M=(-1 ; -4).\)

Tọa độ tiếp điểm N của \({\Delta _2}\) với \((C)\) là nghiệm của hệ

\(\left\{ \begin{array}{l}2x + y - 4 = 0\\{x^2} + {y^2} - 2x + 6y + 5 = 0\end{array} \right. \)

\(   \Leftrightarrow   \left\{ \begin{array}{l}x = 3\\y =  - 2\end{array} \right.\). Vậy \(N=(3 ; -2).\)

Sachbaitap.com

Xem thêm tại đây: Bài 4. Đường tròn.