Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 6, 7, 8, 9, 10 trang 15, 16 SBT Hình học 10 Nâng cao

Giải bài tập Bài 6, 7, 8, 9, 10 trang 15, 16 SBT Hình học 10 Nâng cao

Bài 6 trang 15 SBT Hình học 10 Nâng cao

Cho bốn điểm \(A, B, C, D\). Gọi \(I\) và \(J\) lần lượt là trung điểm của các đoạn thẳng \(AB\) và \(CD\). Trong các đẳng thức dưới đây, đẳng thức nào sai?

A. \(2\overrightarrow {IJ}  = \overrightarrow {AB}  + \overrightarrow {CD} ;\)

B. \(2\overrightarrow {IJ}  = \overrightarrow {AC}  + \overrightarrow {BD} ;\)

C. \(2\overrightarrow {IJ}  = \overrightarrow {AD}  + \overrightarrow {BC} ;\)

D. \(2\overrightarrow {IJ}  + \overrightarrow {CA}  + \overrightarrow {DB}  = \overrightarrow 0 .\)

Giải

Chọn (A).

Bài 7 trang 15 SBT Hình học 10 Nâng cao

Cho sáu điểm \(A, B, C, D, E, F.\) Trong các đẳng thức dưới đây, đẳng thức nào sai?

A. \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BD}  + \overrightarrow {CF} ;\)

B. \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CE} ;\)

C. \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} ;\)

D. \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BE}  + \overrightarrow {CD} .\)

Giải

Chọn (B).

Bài 8 trang 16 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) và điểm \(I\) sao cho \(\overrightarrow {IA}  = 2\overrightarrow {IB} \). Biểu thị vec tơ \(\overrightarrow {CI} \) theo hai vec tơ \(\overrightarrow {CA} \) và \(\overrightarrow {CB} \) như sau:

A. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  - 2\overrightarrow {CB} }}{3};\)

B. \(\overrightarrow {CI}  =  - \overrightarrow {CA}  + 2\overrightarrow {CB} ;\)

C. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  + 2\overrightarrow {CB} }}{3};\)

D. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  + 2\overrightarrow {CB} }}{{ - 3}}.\)

Giải

Chọn (B).

Bài 9 trang 16 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) và \(I\) là điểm sao cho \(\overrightarrow {IA}  + 2\overrightarrow {IB}  = \overrightarrow 0 \). Biểu thị vec tơ \(\overrightarrow {CI} \) theo hai vec tơ \(\overrightarrow {CA} \) và \(\overrightarrow {CB} \) như sau:

A. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  - 2\overrightarrow {CB} }}{3};\)

B. \(\overrightarrow {CI}  =  - \overrightarrow {CA}  + 2\overrightarrow {CB} ;\)

C. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  + 2\overrightarrow {CB} }}{3};\)

D. \(\overrightarrow {CI}  = \dfrac{{\overrightarrow {CA}  + 2\overrightarrow {CB} }}{{ - 3}}.\)

Giải

Chọn (C).

Bài 10 trang 16 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) với trọng tâm \(G\). Đặt \(\overrightarrow {CA}  = \overrightarrow a ,\,\,\overrightarrow {CB}  = \overrightarrow b \). Biểu thị vec tơ \(\overrightarrow {AG} \) theo hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) như sau:

A. \(\overrightarrow {AG}  = \dfrac{{2\overrightarrow a  - \overrightarrow b }}{3};\)

B. \(\overrightarrow {AG}  = \dfrac{{2\overrightarrow a  + \overrightarrow b }}{3};\)

C. \(\overrightarrow {AG}  = \dfrac{{\overrightarrow a  - 2\overrightarrow b }}{3};\)

D. \(\overrightarrow {AG}  = \dfrac{{ - 2\overrightarrow a  + \overrightarrow b }}{3}.\)

Giải

Chọn (D).

Sachbaitap.com