Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 61 trang 131 Sách bài tập Hình học lớp 12 Nâng cao

a)Viết phương trình hình chiếu của đường thẳng d :

a) Viết phương trình hình chiếu của đường thẳng d : \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 3 + t \hfill \cr}  \right.\)

trên mỗi mặt phẳng sau : \(mp(Oxy),mp(Oxz),mp(Oyz),\)

\(mp\left( \alpha  \right):x + y + z - 7 = 0.\)

b) Viết phương trình hình chiếu vuông góc của đường thẳng

\(d:\left\{ \matrix{  x = {7 \over 2} + 3t \hfill \cr  y =  - 2t \hfill \cr  z =  - 2t \hfill \cr}  \right.\)

Trên mặt phẳng \(\left( \alpha  \right):x + 2y - 2z - 2 = 0.\)

Giải

a) Phương trình hình chiếu vuông góc của đường thẳng d trên mặt phẳng tọa độ (Oxy) là

\(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 0. \hfill \cr}  \right.\)

\( * \) Phương trình hình chiếu vuông góc của đường thẳng d trên mp(Oxz) là

\(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y = 0 \hfill \cr  z = 3 + t. \hfill \cr}  \right.\)

\( * \) Phương trình hình chiếu vuông góc của đường thẳng d trên mp(Oyz) là

\(\left\{ \matrix{  x = 0 \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 3 + t. \hfill \cr}  \right.\)

\( * \) Hình chiếu vuông góc của đường thẳng d trên \(mp\left( \alpha  \right)\) là giao tuyến của mặt phẳng \(\left( \alpha  \right)\) với mặt phẳng \(\left( \beta  \right)\), trong đó \(\left( \beta  \right)\) là mặt phẳng chứa đường thẳng d và vuông góc với \(\left( \alpha  \right)\).

Vectơ chỉ phương của d là \(\overrightarrow {{u_d}}  = (2;3;1),\) vec tơ pháp tuyến của \(\left( \alpha  \right)\) là \(\overrightarrow {{n_\alpha }}  = (1;1;1).\) Vậy vec tơ pháp tuyến của \(\left( \beta  \right)\) là :

\(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_\alpha }} } \right] = \left( {\left| \matrix{  3 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  2 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  2 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  1 \hfill \cr}  \right|} \right) \)

      \(= (2; - 1; - 1).\)

Điểm \({M_0}\left( {1; - 2;3} \right)\) thuộc d và cũng thuộc \((\beta)\), do đó phương trình mặt phẳng \((\beta)\) là:

\(\eqalign{
& 2\left( {x - 1} \right) - 1\left( {y + 2} \right) - 1\left( {z - 3} \right) = 0 \cr
& \Leftrightarrow 2x - y - z - 1 = 0 \cr} \)

Vậy hình chiếu của d trên \((\alpha)\) là giao tuyến của hai mặt phẳng \((\beta)\) và \((\alpha)\) có phương trình lần lượt là: \(x+y+z-7=0\) và \(2x-y-z-1=0\).

Suy ra phương trình tham số của d là:

\(\left\{ \matrix{
x = {8 \over 3} \hfill \cr
y = {{13} \over 3} - t \hfill \cr
z = t \hfill \cr} \right.\)

b) Gọi \((\beta)\) là mặt phẳng chứa đường thẳng d và vuông góc với \((\alpha)\) thì \((\beta)\) có phương trình là:

\((\beta ):2x + y + 2z - 7 = 0\)

Khi đó hình chiếu của đường thẳng d trên \((\alpha)\) là giao tuyến của \((\alpha):x+2y-2z-2=0\) và \((\beta ):2x + y + 2z - 7 = 0\).

Từ đó suy ra phương trình đường thẳng d là:

\({{x - 4} \over 2} = {{y + 1} \over { - 2}} = {z \over { - 1}}\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.