Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 76 trang 135 Sách bài tập Hình học lớp 12 Nâng cao

a)Tìm tọa độ điểm đối xứng của

a) Tìm tọa độ điểm đối xứng của \({M_0}(2; - 1;1)\) qua đường thẳng :

\(d:\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - t \hfill \cr  z = 2t. \hfill \cr}  \right.\)

b) Tìm tọa độ điểm đối xứng của \({M_0}( - 3;1; - 1)\) qua đường thẳng d là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):4x - 3y - 13 = 0\) và \(\left( {\alpha '} \right):y - 2z + 5 = 0.\)

c) Tìm độ điểm đối xứng của \({M_0}(2; - 1;1)\) qua đường thẳng d là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):y + z - 4 = 0\) và \(\left( {\alpha '} \right):2x - y - z + 2 = 0.\)

Giải

a) Phương trình mặt phẳng qua điểm \({M_O}(2; - 1;1)\) và vuông góc với đường thẳng d đã cho là

\(2(x - 2) + \left( { - 1} \right)\left( {y + 1} \right) + 2\left( {z - 1} \right) = 0\)

\(\Leftrightarrow 2x - y + 2z - 7 = 0.\)

Gọi \(H(x;y;z)\) là giao điểm của đường thẳng d với mặt phẳng trên, ta có: \(H = \left( {{{17} \over 9}; - {{13} \over 9};{8 \over 9}} \right).\)

Gọi \({M_0}'\left( {x;y;z} \right)\) là điểm đối xứng với điểm \({M_o}\) qua đường thẳng d thì H là trung điểm của đoạn thẳng\({M_o}{M_o}'\) . Do đó

        \(\left\{ \matrix{  {{x + 2} \over 2} = {{17} \over 9} \hfill \cr  {{y - 1} \over 2} =  - {{13} \over 9} \hfill \cr  {{z + 1} \over 2} = {8 \over 9}. \hfill \cr}  \right.\)

Vậy \({M_o}' = \left( {{{16} \over 9}; - {{17} \over 9};{7 \over 9}} \right).\)

b) Ta xác định được vectơ chỉ phương của d là \(\overrightarrow {{u_d}}  = \left( {3;4;2} \right).\)

Khi đó phương trình mặt phẳng qua \({M_o}\) và vuông góc với d là :

        \(\left( \alpha  \right):3x + 4y + 2z + 7 = 0.\)

Gọi \(H(x;y;z)\) là giao điểm của d và \(\left( \alpha  \right)\), ta có \({H}= \left( {1; - 3;1} \right).\)

Gọi \(M_o'\left( {x;y;z} \right)\) là điểm đối xứng của \({M_o}\) qua d, ta có \(M_o' = (5; - 7;3).\)

c) Ta xác định vectơ chỉ phương của d:

\(\overrightarrow {{u_d}}  = \left( {\left| {\matrix{   1 & 1  \cr   { - 1} & { - 1}  \cr  } } \right|;\left| {\matrix{   1 & 0  \cr   { - 1} & 2  \cr  } } \right|;\left| {\matrix{   0 & 1  \cr   2 & { - 1}  \cr  } } \right|} \right)\)

      \(= \left( {0;2; - 2} \right).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng qua \({M_o}\) và vuông góc với d, khi đó \(\left( \alpha  \right)\) có phương trình: \(y - z + 2 = 0.\)

Gọi H là giao điểm của d với mp\(\left( \alpha  \right)\), toa độ của \(H(x;y;z)\) là nghiệm của hệ:

        \(\left\{ \matrix{  y + z - 4 = 0 \hfill \cr  2x - y - z + 2 = 0 \hfill \cr  y - z + 2 \hfill \cr}  \right. \Rightarrow H = \left( {1;1;3} \right).\)

Từ đó, điểm \(M_o'\) đối xứng với \({M_o}\) qua d là \(M_o' = \left( {0;3;5} \right).\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.