Bài 99 trang 121 SBT Hình học 10 Nâng caoGiải bài tập Bài 99 trang 121 SBT Hình học 10 Nâng cao Cho \(A, B\) là hai điểm trên parabol \((P): {y^2} = 2px\) sao cho tổng các khoảng cách từ \(A\) và \(B\) tới đường chuẩn của \((P)\) bằng độ dài \(AB\). Chứng minh rằng \(AB\) luôn đi qua tiêu điểm của \((P).\) Giải (h.128).
Gọi \(A’, B’\) thứ tự là hình chiếu của \(A, B\) trên đường chuẩn \(\Delta \) của \((P); F\) là tiêu điểm của \((P)\). Ta có \(A, B \in (P) \Rightarrow AF = d(A ; \Delta ) = AA' , \) \(BF = d(B ; \Delta ) = BB'\). Suy ra \(AF+BF=AA’+BB’=AB.\) Vậy \(A, B, F\) thẳng hàng hay \(AB\) đi qua \(F.\) Sachbaitap.com
Xem thêm tại đây:
Bài 8. Ba đường cônic.
|