Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 11 trang 138 Sách Bài Tập (SBT) Toán lớp 7 tập 1

a) Tính góc BAC.

Cho tam giác ABC có \(\widehat B = 70^\circ ,\widehat C = 30^\circ \). Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC (H ∈ BC).

a) Tính \(\widehat {BAC}\) 

b) Tính \(\widehat {A{\rm{D}}H}\)

c) Tính \(\widehat {HA{\rm{D}}}\)

Giải

a) Trong ∆ABC, ta có:

\(\widehat {BAC} + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong tam giác)

Mà \(\widehat B = 70^\circ ;\widehat C = 30^\circ \left( {gt} \right)\)

Suy ra: \(\widehat {BAC} + 70^\circ  + 30^\circ  = 180^\circ \)

Vậy \(\widehat {BAC} = 180^\circ  - 70^\circ  - 30^\circ  = 80^\circ \)

b) Ta có: \(\widehat {{A_1}} = {1 \over 2}\widehat {BAC} = {1 \over 2}.80^\circ  = 40^\circ \) (Vì AD là tia phân giác của \(\widehat {BAC}\))

Trong ∆ADC ta có \(\widehat {A{\rm{D}}H}\) là góc ngoài tại đỉnh D.

Do đó: \(\widehat {A{\rm{D}}H} = \widehat {{A_1}} + \widehat C\) (tính chất góc ngoài của tam giác)

Vậy \(\widehat {A{\rm{D}}H} = 40^\circ  + 30^\circ  = 70^\circ \)

c) ∆ADH vuông tại H nên:

\(\widehat {HA{\rm{D}}} + \widehat {A{\rm{D}}H} = 90^\circ \) (tính chất tam giác vuông)

\( \Rightarrow \widehat {HA{\rm{D}}} = 90^\circ  - \widehat {A{\rm{D}}H} = 90^\circ  - 70^\circ  = 20^\circ \)

Sachbaitap.com

Xem lời giải SGK - Toán 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.