Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.59 trang 18 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho hàm số

Cho hàm số\(f(x) = \tan (\pi x)\).

a) Tìm tập xác định của hàm số \(y = f(x)\);

b) Chứng minh rằng với mọi số nguyên k , ta có \(f(x + k) = f(x)\) . Từ đó suy ra \(y = f(x)\) là hàm số tuần hoàn với chu kì T = 1;

c) Cho biết sự biến thiên của hàm số \(y = f(x)\) trên mỗi khoảng\(\left( { - {1 \over 2} + k;{1 \over 2} + k} \right),k \in Z\);

d) Vẽ đồ thị của hàm số đó.

Giải

a) Hàm số \(y = \tan (\pi x)\) xác định khi và chỉ khi \(\cos \left( {\pi x} \right) \ne 0.\) Mặt khác

\(\cos \left( {\pi x} \right) = 0 \Leftrightarrow {\pi x}={\pi  \over 2} + k\pi  \Leftrightarrow x = {1 \over 2} + k\left( {k \in Z} \right)\)

Từ đó suy ra tập xác định của hàm số \(y = \tan (\pi x)\) là: \(D = R\backslash \left\{ {{1 \over 2} + k|k \in Z} \right\}\)

b) Với mọi \(k \in Z,\) ta có

\(f\left( {x + k} \right) = \tan \left[ {\pi \left( {x + k} \right)} \right] = \tan \left( {\pi x + k\pi } \right) \)

\(= \tan \left( {\pi x} \right) = f\left( x \right)\)

Trong các số nguyên dương, số 1 là nhỏ nhất. Do đó \(\tan (\pi x)\) là hàm số tuần hoàn với chu kì \(T = 1\)

c) Ta thấy

\( - {1 \over 2} + k < x < {1 \over 2} + k \Leftrightarrow  - {\pi  \over 2} + k\pi  < \pi x < {\pi  \over 2} + k\pi \)

Từ đó suy ra hàm số \(\tan (\pi x)\) đồng biến trên mỗi khoảng \(\left( { - {1 \over 2} + k;{1 \over 2} + k} \right),\,k \in Z\)

d) Đồ thị của hàm số có dạng như hình 1.20.

                                                       

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.